<p>In this study, an efficient method to enhance phenolic compound production in the in vitro cultured shoots of <em>Polyscias filicifolia</em> was developed. The phenolic compound content in <em>P. filicifolia</em> has not yet been reported. Shoots were treated with methyl jasmonate (JM) or salicylic acid (SA) at doses of 50, 100, or 200 µM. HPLC-UV-VIS and LC-MS techniques were used for the determination of chlorogenic, caffeic, and ferulic acids. The total phenolics and flavonoids were quantified, and the antioxidant capacity of plant extracts was determined using DPPH and ABTS methods. Finally, the cytotoxic activity of <em>P. filicifolia</em> extracts in normal (HaCaT) and cancer (A549) cells was investigated. Further, the effect of the extracts on cisplatin cytotoxicity was assessed.</p><p>The elicitors significantly enhanced phenolic production compared to that in untreated shoots and leaves of intact plants. Chlorogenic acid was the most abundant compound with the highest yield of 5.03 ±0.25 mg/g DW after treatment with 50 µM SA. The total flavonoid and phenolic content was significantly and dose-dependently influenced by JM. The highest antioxidant capacity was noted in extracts derived from shoots grown on media supplemented with 50 µM SA and 200 µM JM; these doses were used for further cytotoxic activity investigations. The extracts from JM or SA treatments reduced cancer cell viability and increased their mortality, whereas the extract from JM treatment exhibited protective effect on normal cells. Moreover, the comparison of cytotoxic properties of plant extracts and cisplatin indicated that plant phenolic compounds in combination with anticancer drugs could reduce the detrimental effect of the latter on human cells.</p>
Traditional medicinal plants are an important source of active compounds with potential antimutagenic activity. Polyscias filicifolia Bailey (Araliaceae) is a South Asian traditional herb used as an adaptogenic and cardiac drug. Extracts of P. filicifolia contain a wide range of biologically active compounds like phenolic acids and triterpenoid saponins. In the present study. antigenotoxic potential of three naturally occurring phenolic acids and extracts of P. filicifolia growing in vitro with the addition of elicitors was evaluated against direct (4-nitroquinoline-N-oxide (4NQO) and mitomycin C (MMC)) and indirect mutagens (2-aminoanthracene (2AA)). The evaluation was made using a bacterial umu-test. Moreover, the ability to prevent photogenotoxicity induced by chlorpromazine (CPZ) under UVA irradiation was measured. The phytochemical profiling of examined extracts revealed the presence of numerous compounds with the prevelance of chlorogenic, caffeic, and ferulic acid derivatives; however, saponin fractions were also determined. The antioxidant potential of extracts strictly correlated with their composition. The tested extracts exhibited high antigenotoxic activity if the assay was performed with 2AA and metabolic activation. Moreover, the extracts slightly decreased the MMC-induced genotoxicity. However, an increase of the genotoxic effect was observed in the assay performed with 4NQO. In addition, photo-antigenotoxic activity was observed. In our study, phenolic acids exhibited lower activity than the extracts.
Efficient plant regeneration through somatic embryogenesis was achieved in Polyscias filicifolia. Embryogenic calluses were induced on Murashige and Skoog (MS) basal medium supplemented with 0.5 mg l −1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l −1 benzylaminopurine (BAP; type I callus) and on MS medium with 2.0 mg l −1 2,4-D and 0.01 mg l −1 kinetin (type II callus) from leaf explants of a 2-yr-old plant. Primary somatic embryos (PSEs) developed after four passages of suspension culture established from embryogenic callus when cultured in liquid half-strength MS medium (1/2 MS) without growth regulators. PSEs in the cotyledonary stage were multiplied by adventitious embryogenesis. Single secondary somatic embryos (SSEs) or their clusters developed at the base of PSE hypocotyls and regenerated into plantlets in a one-step process on plant growth regulator-free 1/2 MS medium. Low sucrose concentration of 15 g l −1 promoted development of normal SSEs. All SSEs regenerated into single, well-rooted plantlets on a Nitsch and Nitsch medium supplemented with 0.5 mg l −1 kinetin, 0.1 mg l −1 indole-3-butyric acid, and 10 mg l −1 adenine sulfate. Subsequent two subculture cycles on the same medium were necessary to obtain plantlets sufficiency developed to allow successful transfer to the soil. Rooted plantlets were established in a peat mixture with 90% survival, with the plants showing normal morphological characteristics.
Polyscias filicifolia (Araliaceae) is broadly used in traditional medicine in Southeast Asia due to its antimicrobial, immunomodulating and cytotoxic activities. The main groups of compounds responsible for pharmacological effects are believed to be oleanolic triterpene saponins. However, Polyscias plants demonstrate relatively slow growth in natural conditions, which led to applying a developing sustainable source of plant material via primary (PSE), secondary (DSE) and direct somatic embryogenesis from DSE (TSE). The AFLP and metAFLP genotyping resulted in 1277 markers, amplified by a total of 24 pairs of selective primers. Only 3.13% of the markers were polymorphic. The analysis of variance showed that the PSE and TSE regenerants differed only in terms of root number, while the DSE plantlets differed for all studied morphological characteristics. Further, the chemical analysis revealed that oleanolic acid (439.72 µg/g DW), ursolic acid (111.85 µg/g DW) and hederagenin (19.07 µg/g DW) were determined in TSE regenerants. Our results indicate that direct somatic embryogenesis ensures the production of homogeneous plant material, which can serve as a potential source of triterpene compounds. Plants obtained via somatic embryogenesis could also be reintroduced into the natural environment to protect and preserve its biodiversity.
The effectiveness of different elicitation variants in combination with alarmone application was studied in shoot cultures of Polyscias filicifolia. The shoots were elicited with 200 µM methyl jasmonate (MeJA) or 50 µM salicylic acid (SA) alone or in combination, and their activity was compared with those treated with the alarmone diadenosine 5′,5‴-P1P3-triphosphate (Ap3A), either alone or in combination with SA and/or MeJA. All treatments resulted in significant stimulation of phenolic acid production (chlorogenic and ferulic acids), as well as oleanolic acid (OA) compared to control, with their highest concentration noted under simultaneous elicitation with SA and MeJA. While the maximum content of caffeic acid was detected after treatment with alarmone alone. In each of the culture variants enhanced antioxidant activity was observed, however the level varied according to the treatment. In addition, the SA, Ap3A and Ap3A+SA variants demonstrated additional peroxidase isoforms, as indicated by Native-PAGE, as well as the highest α-tocopherol content. The highest antioxidant capacity of shoot extracts was correlated with the highest abundance of phenolic compounds and OA. The results indicate that ROS induction appears to participate in the signal transduction following Ap3A treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.