Background: The predominant metastatic site of lung cancer (LC) is the brain. Although outdated, conventional cisplatin treatment is still the main therapeutic approach for patients with advanced non-small cell lung cancer (NSCLC), since targeted therapy that offers better tumor control is not always possible. In the present study brain metastasis associated cytokine expression was investigated in primary NSCLC adenocarcinoma (AC) tissues with known oncogenic mutations in the presence or absence of platina based and tyrosine kinase inhibitor (TKI) drugs. Methods: Primary lung tumor samples were isolated, DNA was sequenced and then the samples were grouped based on mutation. Experiments were also performed using KRAS mutant A549 and EGFR mutant PC-9 cells. Drug response was analyzed in three dimensional (3D) tissue cultures. We assessed drug response and IL-6 and IL-8 cytokine expression in relation to cellular invasion using ATP dependent cell viability, qRT-PCR analysis, cytokine bead array, and migration assay. Results: In 3D co-cultures, primary NSCLC derived cells harboring EGFR mutation responded better to erlotinib treatment than KRAS mutant or KRAS/EGFR wild type (WT) cancer cells. In contrast, under the same culture conditions KRAS/EGFR WT or KRAS mutant cancer cells are more sensitive to cisplatin than EGFR mutant cells. Drug response and pro-inflammatory cytokine production varied depending on the driver mutations. Cisplatin but not erlotinib increased both IL-6 and IL-8 secretion and only IL-6 increased cellular migration and proliferation. Conclusion: In vitro assays are available to determine the response to planned therapeutic approach of lung cancer subtypes. The sequence of administration of therapeutic drugs determines cytokine production and therefore therapeutic response.
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis. Transient Receptor Potential Ankyrin 1 (TRPA1) and Vanilloid 1 (TRPV1) receptors are non-selective cation channels expressed on primary sensory neurons and epithelial and immune cells. TRPV1 mRNA and immunopositivity, as well as TRPA1-like immunoreactivity upregulation, were demonstrated in OSCC, but selectivity problems with the antibodies still raise questions and their functional relevance is unclear. Therefore, here, we investigated TRPA1 and TRPV1 expressions in OSCC and analyzed their functions. TRPA1 and TRPV1 mRNA were determined by RNAscope in situ hybridization and qPCR. Radioactive 45Ca2+ uptake and ATP-based luminescence indicating cell viability were measured in PE/CA-PJ41 cells in response to the TRPA1 agonist allyl-isothiocyanate (AITC) and TRPV1 agonist capsaicin to determine receptor function. Both TRPA1 and TRPV1 mRNA are expressed in the squamous epithelium of the human oral mucosa and in PE/CA-PJ41 cells, and their expressions are significantly upregulated in OSCC compared to healthy mucosa. TRPA1 and TRPV1 activation (100 µM AITC, 100 nM capsaicin) induced 45Ca2+-influx into PE/CA-PJ41 cells. Both AITC (10 nM–5 µM) and capsaicin (100 nM–45 µM) reduced cell viability, reaching significant decrease at 100 nM AITC and 45 µM capsaicin. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the OSCC and confirm the expression of TRPV1 channel. These channels are functionally active and might regulate cancer cell viability.
Glutamine uptake has been studied in purified rat brain mitochondria of synaptic or non-synaptic origin. It was taken up by an active saturable transport mechanism, with an affinity two-times higher in synaptic than in non-synaptic mitochondria (K,,, = 0.45 and 0.94 mM, respectively). I',,, of uptake was 7-times higher in synaptic mitochondria (I',,,,, = 9.2 and 1.3 nmol/min per mg protein, respectively). Glutamine transport was found to be inhibited by L-glutamate (IC,, = 0.64 mM) as well as thiol reagents (mersalyl, N-ethylmaleimide). It is suggested that differential uptake of glutamine in mitochondria of synaptic or nonsynaptic origin may be a major mechanism in the regulation of the synthesis of the neurotransmitter glutamate.Glutamine uptake Purified mitochondria Glutamate
Background: Somatostatin released from the capsaicin-sensitive sensory nerves mediates analgesic and anti-inflammatory effects via its receptor subtype 4 (SST4) without influencing endocrine functions. Therefore, SST4 is considered to be a novel target for drug development in pain, especially chronic neuropathy which is a great unmet medical need.Purpose and Experimental Approach: Here, we examined the in silico binding, SST4-linked G protein activation and β-arrestin activation on stable SST4 expressing cells and the effects of our novel pyrrolo-pyrimidine molecules (20, 100, 500, 1,000, 2,000 µg·kg−1) on partial sciatic nerve ligation-induced traumatic mononeuropathic pain model in mice.Key Results: The novel compounds bind to the high affinity binding site of SST4 the receptor and activate the G protein. However, unlike the reference SST4 agonists NNC 26-9100 and J-2156, they do not induce β-arrestin activation responsible for receptor desensitization and internalization upon chronic use. They exert 65–80% maximal anti-hyperalgesic effects in the neuropathy model 1 h after a single oral administration of 100–500 µg·kg−1 doses.Conclusion and Implications: The novel orally active compounds show potent and effective SST4 receptor agonism in vitro and in vivo. All four novel ligands proved to be full agonists based on G protein activation, but failed to recruit β-arrestin. Based on their potent antinociceptive effect in the neuropathic pain model following a single oral administration, they are promising candidates for drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.