The primary product of the oenological sector is wine. Nonetheless, the grape processing produces large amounts of by-products and wastes, e.g., the grape seeds. In the context of a sustainable production, there is a strong push towards reutilizing these by-products and waste for making useful derivatives since they are rich of bioactive substances with high additional value. As it is true for the wine itself, bringing these by-products derivatives to the market calls for quality measures and analytical tools to assess quality itself. One of the main objectives is to collect analytical data regarding bioactive compounds using potentially green techniques. In the present work, the profile of fatty acids and the main phenolic compounds were investigated by conventional methods. The qualitative analysis of the main functional groups was carried out by Fourier Transform Infrared (FTIR) spectroscopy. Moreover, the successful use of FTIR technique in combination with chemometric data analysis is shown to be a suitable analytical tool for discriminating the grape seeds. Grape seeds of different origin have different content of bioactive substances, making this technique useful when planning to recover a certain substance with specific potential application in health area as food supplement or nutraceutical. For example, Cesanese d’Affile seeds were found to have a rather high fat content with a significant fraction of unsaturated fatty acids. On the other hand, the seeds of Nero d’Avola exhibit the highest amount of phenolic compounds.
Olive oil is a liquid fat obtained from the fruit of Olea europaea, a plant belonging to the Oleaceae family, which is widely cultivated and diffused in the Mediterranean area. It is largely produced and used since antiquity. It is mainly used and consumed as food but also as key ingredient in a wide variety of cosmetic products, e.g., to moisturize and nourish dry skin. In the last few decades, olive oil has received much attention as compared to the other seed-obtained oils as well as to the animal fats due to many functional compounds with positive effects on health. To maintain the genuine picture of olive oil, it is essential to assure its authenticity and quality. The presence of bioactive compounds, which characterize the olive oil owing to their antioxidant properties, can be assessed by spectroscopic and chromatographic methods. Currently, spectroscopic techniques combined with chemometric data analysis represent one of the most promising detection methods in the food sector. They offer rapid, versatile, and inexpensive data collection and analyses. The main advantages include the limited and simple sample preparation and the possibility to get spectra directly from the production line. Infrared spectroscopy (mid- and near-infrared) coupled to chemometrics is considered as powerful, fast, accurate, and nondestructive analytical tool for rapid and precise determination of the bioactive compounds content, as well of their bioactivities, i.e., antioxidant properties. These techniques represent a valid alternative to the existing conventional methods of analysis, e.g., based on chromatography and mass spectrometry. Indeed, the present review focuses on the application of infrared spectroscopy for functional compounds evaluation in olive oil.
Passion fruit oil is a high-value product with applications in the food and cosmetic sectors. It is frequently diluted with sunflower oil. Sunflower oil is also a potential adulterant as its addition does not notably alter the appearance of the passion fruit oil. In this paper, we show that this is also true for the FTIR spectrum. However, the chemometric analysis of the data changes this situation. Principal component analysis (PCA) enables not only the straightforward discrimination of pure passion fruit oil and adulterated samples but also the unambiguous classification of passion fruit oil products from five different manufacturers. Even small amounts—significantly below 1%—of the adulterant can be detected. Furthermore, partial least-squares regression (PLSR) facilitates the quantification of the amount of sunflower oil added to the passion fruit oil. The results demonstrate that the combination of FTIR spectroscopy and chemometric data analysis is a very powerful tool to analyze passion fruit oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.