Protection against epigenetic silencing is a desirable feature of future gene therapy vectors, in particular for those applications in which transgene expression will not confer growth advantage to gene-transduced cells. The ubiquitous chromatin opening element (UCOE) consisting of the methylation-free CpG island encompassing the dual divergently transcribed promoters of the human HNRPA2B1-CBX3 housekeeping genes (A2UCOE) has been shown to shield constitutive active heterologous promoters from epigenetic modifications and chromosomal position effects. However, it is unclear if this element can be used to improve expression from tissue-specific enhancer/promoters, while maintaining tissue specificity in hematopoietic cells. Here, we evaluated the potential of the A2UCOE in combination with the myeloid-specific myeloid related protein 8 (MRP8) promoter to target transgene expression specifically to myeloid cells in vitro and in vivo from a self-inactivating lentiviral vector. The inclusion of the A2UCOE did not interfere with specific upregulation of MRP8 promoter activity during myeloid differentiation and mediated sustained and vector copy-dependent expression in myeloid cells. Notably, the A2UCOE did not protect the MRP8 promoter from methylation in the P19 embryonal carcinoma cell line, suggesting that this element maintains the inherent epigenetic state and transcriptional activity of cellular promoters in their native configuration. Thus, the A2UCOE could represent a useful protective genetic element in gene therapy vectors, ensuring physiological transcriptional regulation of tissue-specific promoters independent of the chromosomal integration site.
Pancreatic ductal adenocarcinoma (PDAC) carries the most dismal prognosis of all solid tumors and is generally strongly resistant to currently available chemo-and/or radiotherapy regimens, including targeted molecular therapies. Therefore, unraveling the molecular mechanisms underlying the aggressive behavior of pancreatic cancer is a necessary prerequisite for the development of novel therapeutic approaches. We previously identified the protein placenta-specific 8 (PLAC8, onzin) in a genome-wide search for target genes associated with pancreatic tumor progression and demonstrated that PLAC8 is strongly ectopically expressed in advanced preneoplastic lesions and invasive human PDAC. However, the molecular function of PLAC8 remained unclear, and accumulating evidence suggested its role is highly dependent on cellular and physiologic context. Here, we demonstrate that in contrast to other cellular systems, PLAC8 protein localizes to the inner face of the plasma membrane in pancreatic cancer cells, where it interacts with specific membranous structures in a temporally and spatially stable manner. Inhibition of PLAC8 expression strongly inhibited pancreatic cancer cell growth by attenuating cell-cycle progression, which was associated with transcriptional and/or posttranslational modification of the central cell-cycle regulators CDKN1A, retinoblastoma protein, and cyclin D1 (CCND1), but did not impact autophagy. Moreover, Plac8 deficiency significantly inhibited tumor formation in genetically engineered mouse models of pancreatic cancer. Together, our findings establish PLAC8 as a central mediator of tumor progression in PDAC and as a promising candidate gene for diagnostic and therapeutic targeting. Cancer Res; 76(1); 96-107. Ó2015 AACR.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumors. With an overall five-year survival rate remaining below 6%, there is an explicit need to search for new molecular targets for therapeutic interventions. We undertook a barcode labelled short-hairpin (shRNA) library screen in pancreatic cancer cells in order to identify novel genes promoting cancer survival and progression. Among the candidate genes identified in this screen was the deubiquitinase USP5, which subsequent gene expression analyses demonstrated to be significantly upregulated in primary human pancreatic cancer tissues. Using different knockdown approaches, we show that expression of USP5 is essential for the proliferation and survival of pancreatic cancer cells, tested under different 2D and 3D cell culture conditions as well as in in vivo experiments. These growth inhibition effects upon knockdown of USP5 are mediated primarily by the attenuation of G1/S phase transition in the cells, which is accompanied by accumulation of DNA damage, upregulation of p27, and increased apoptosis rates. Since USP5 is overexpressed in cancer tissues, it can thus potentially serve as a new target for therapeutic interventions, especially given the fact that deubiquitinases are currently emerging as new class of attractive drug targets in cancer.
Basic helix-loop-helix transcription factor Twist1 is a master regulator of Epithelial-Mesenchymal Transition (EMT), a cellular program implicated in different stages of development as well as metastatic dissemination of carcinomas. Here, we show that Twist1 requires TGF-beta type-I receptor (TGFBR1)-activation to bind an enhancer region of downstream effector ZEB1, thereby inducing ZEB1 transcription and EMT. When TGFBR1-phosphorylation is inhibited, Twist1 generates a distinct cell state characterized by collective invasion, simultaneous proliferation and expression of endothelial markers. By contrast, TGFBR1-activation directs Twist1 to induce stable mesenchymal transdifferentiation through EMT, thereby generating cells that display single-cell invasion, but lose their proliferative capacity. In conclusion, preventing Twist1-induced EMT by inhibiting TGFβ-signaling does not generally block acquisition of invasion, but switches mode from single-cell/non-proliferative to collective/proliferative. Together, these data reveal that transient Twist1-activation induces distinct cell states depending on signaling context and caution against the use of TGFβ-inhibitors as a therapeutic strategy to target invasiveness.
Innovative approaches for the treatment of rare inherited diseases are hampered by limited availability of patient derived samples for preclinical research. This also applies for the evaluation of novel vector systems for the gene therapy of monogenic hematological diseases like X-linked chronic granulomatous disease (X-CGD), a severe primary immunodeficiency caused by mutations in the gp91phox subunit of the phagocytic NADPH oxidase. Since current gene therapy protocols involve ex vivo gene modification of autologous CD34+ hematopoietic stem cells (HSC), the ideal preclinical model should simulate faithfully this procedure. However, the low availability of patient-derived CD34+ cells limits the feasibility of this approach. Here, we describe a straightforward experimental strategy that circumvents this limitation. The knock down of gp91phox expression upon lentiviral delivery of shRNAs into CD34+ cells from healthy donors generates sufficient amounts of X-CGD CD34+ cells which subsequently can be used for the evaluation of novel gene therapeutic strategies using a codon-optimized gp91phox transgene. We have used this strategy to test the potential of a novel gene therapy vector for X-CGD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.