Complex DNA structures, such as double Holliday junctions and stalled replication forks, arise during DNA replication and DNA repair. Factors processing these intermediates include the endonuclease MUS81, helicases of the RecQ family, and the yeast SNF2 ATPase RAD5 and its Arabidopsis thaliana homolog RAD5A. By testing sensitivity of mutant plants to DNAdamaging agents, we defined the roles of these factors in Arabidopsis. rad5A recq4A and rad5A mus81 double mutants are more sensitive to cross-linking and methylating agents, showing that RAD5A is required for damage-induced DNA repair, independent of MUS81 and RECQ4A. The lethality of the recq4A mus81 double mutant indicates that MUS81 and RECQ4A also define parallel DNA repair pathways. The recq4A/mus81 lethality is suppressed by blocking homologous recombination (HR) through disruption of RAD51C, showing that RECQ4A and MUS81 are required for processing recombination-induced aberrant intermediates during replication. Thus, plants possess at least three different pathways to process DNA repair intermediates. We also examined HR-mediated double-strand break (DSB) repair using recombination substrates with inducible site-specific DSBs: MUS81 and RECQ4A are required for efficient synthesis-dependent strand annealing (SDSA) but only to a small extent for single-strand annealing (SSA). Interestingly, RAD5A plays a significant role in SDSA but not in SSA.
SUMMARYIn recent years, multiple factors involved in DNA double-strand break (DSB) repair have been characterised in Arabidopsis thaliana. Using homologous sequences in somatic cells, DSBs are mainly repaired by two different pathways: synthesis-dependent strand annealing (SDSA) and single-strand annealing (SSA). By applying recombination substrates in which recombination is initiated by the induction of a site-specific DSB by the homing endonuclease I-SceI, we were able to characterise the involvement of different factors in both pathways. The nucleases MRE11 and COM1, both involved in DSB end processing, were not required for either SDSA or SSA in our assay system. Both SDSA and SSA were even more efficient without MRE11, in accordance with the fact that a loss of MRE11 might negatively affect the efficiency of non-homologous end joining. Loss of the classical recombinase RAD51 or its two paralogues RAD51C and XRCC3, as well as the SWI2/SNF2 remodelling factor RAD54, resulted in a drastic deficiency in SDSA but had hardly any influence on SSA, confirming that a strand exchange reaction is only required for SDSA. The helicase FANCM, which is postulated to be involved in the stabilisation of recombination intermediates, is surprisingly not only needed for SDSA but to a lesser extent also for SSA. Both SSA and SDSA were affected only weakly when the SMC6B protein, implicated in sister chromatid recombination, was absent, indicating that SSA and SDSA are in most cases intrachromatid recombination reactions.
Rad5 is the key component in the Rad5-dependent error-free branch of postreplication repair in yeast (Saccharomyces cerevisiae). Rad5 is a member of the Snf2 ATPase/helicase family, possessing as a characteristic feature, a RING-finger domain embedded in the Snf2-helicase domain and a HIRAN domain. Yeast mutants are sensitive to DNA-damaging agents and reveal differences in homologous recombination. By sequence comparisons we were able to identify two homologs (AtRAD5a and AtRAD5b) in the Arabidopsis thaliana genome, sharing about 30% identity and 45% similarity to yeast Rad5. AtRad5a and AtRad5b have the same kind of domain organization with a higher degree of similarity to each other than to ScRad5. Surprisingly, both genes differ in function: whereas two independent mutants of Atrad5a are hypersensitive to the cross-linking agents mitomycin C and cis-platin and to a lesser extent to the methylating agent, methyl methane sulfonate, the Atrad5b mutants did not exhibit any sensitivity to all DNA-damaging agents tested. An Atrad5a/Atrad5b double mutant resembles the sensitivity phenotype of the Atrad5a single mutants. Moreover, in contrast to Atrad5b, the two Atrad5a mutants are deficient in homologous recombination after treatment with the double-strand break-inducing agent bleomycin. Our results suggest that the RAD5-dependent error-free branch of postreplication repair is conserved between yeast and plants, and that AtRad5a might be functionally homologous to ScRad5.
Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error-free branch of post-replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication-associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single-strand break repair (AtPARP1), as well as microhomology-mediated double-strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM-mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.