SummaryDifferent DNA repair pathways that use homologous sequences in close proximity to genomic doublestrand breaks (DSBs) result in either an internal deletion or a gene conversion. We determined the ef®ciency of these pathways in somatic plant cells of transgenic Arabidopsis lines by monitoring the restoration of the b-glucuronidase (GUS) marker gene. The transgenes contain a recognition site for the restriction endonuclease I-SceI either between direct GUS repeats to detect deletion formation (DGU.US), or within the GUS gene to detect gene conversion using a nearby donor sequence in direct or inverted orientation (DU.GUS and IU.GUS). Without expression of I-SceI, the frequency of homologous recombination (HR) was low and similar for all three constructs. By crossing the different lines with an I-SceI expressing line, DSB repair was induced, and resulted in one to two orders of magnitude higher recombination frequency. The frequencies obtained with the DGU.US construct were about ®ve times higher than those obtained with DU.GUS and IU.GUS, irrespective of the orientation of the donor sequence. Our results indicate that recombination associated with deletions is the most ef®cient pathway of homologous DSB repair in plants. However, DSB-induced gene conversion seems to be frequent enough to play a signi®cant role in the evolution of tandemly arranged gene families like resistance genes.
Progressive forms of multiple sclerosis lead to chronic disability, substantial decline in quality of life and reduced longevity. It is often suggested that they occur independently of inflammation. Here we investigated the disease progression in mouse models carrying PLP1 point mutations previously found in patients displaying clinical features of multiple sclerosis. These mouse models show loss-of-function of PLP1 associated with neuroinflammation; the latter leading to clinically relevant axonal degeneration, neuronal loss and brain atrophy as demonstrated by inactivation of the recombination activating gene 1. Moreover, these pathological hallmarks were substantially amplified when we attenuated immune regulation by inactivation of the programmed cell death-1 gene. Our observations support the view that primary oligodendroglial abnormalities can evoke pathogenically relevant neuroinflammation that drives neurodegeneration, as observed in some forms of multiple sclerosis but also in other, genetically-mediated neurodegenerative disorders of the human nervous system. As many potent immunomodulatory drugs have emerged during the last years, it is tempting to consider immunomodulation as a treatment option not only for multiple sclerosis, but also for so far non-treatable, genetically-mediated disorders of the nervous system accompanied by pathogenic neuroinflammation.
The development of neuronal networks in the neocortex depends on control mechanisms for mitosis and migration that allow newborn neurons to find their accurate position. Multiple mitogens, neurotrophic factors, guidance molecules and their corresponding receptors are involved in this process, but the mechanisms by which these signals are integrated are only poorly understood. We found that TrkB and TrkC, the receptors for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are activated by epidermal growth factor receptor (EGFR) signaling rather than by BDNF or NT-3 in embryonic mouse cortical precursor cells. This transactivation event regulated migration of early neuronal cells to their final position in the developing cortex. Transactivation by EGF led to membrane translocation of TrkB, promoting its signaling responsiveness. Our results provide genetic evidence that TrkB and TrkC activation in early cortical neurons do not depend on BDNF and NT-3, but instead on transactivation by EGFR signaling.
Rad5 is the key component in the Rad5-dependent error-free branch of postreplication repair in yeast (Saccharomyces cerevisiae). Rad5 is a member of the Snf2 ATPase/helicase family, possessing as a characteristic feature, a RING-finger domain embedded in the Snf2-helicase domain and a HIRAN domain. Yeast mutants are sensitive to DNA-damaging agents and reveal differences in homologous recombination. By sequence comparisons we were able to identify two homologs (AtRAD5a and AtRAD5b) in the Arabidopsis thaliana genome, sharing about 30% identity and 45% similarity to yeast Rad5. AtRad5a and AtRad5b have the same kind of domain organization with a higher degree of similarity to each other than to ScRad5. Surprisingly, both genes differ in function: whereas two independent mutants of Atrad5a are hypersensitive to the cross-linking agents mitomycin C and cis-platin and to a lesser extent to the methylating agent, methyl methane sulfonate, the Atrad5b mutants did not exhibit any sensitivity to all DNA-damaging agents tested. An Atrad5a/Atrad5b double mutant resembles the sensitivity phenotype of the Atrad5a single mutants. Moreover, in contrast to Atrad5b, the two Atrad5a mutants are deficient in homologous recombination after treatment with the double-strand break-inducing agent bleomycin. Our results suggest that the RAD5-dependent error-free branch of postreplication repair is conserved between yeast and plants, and that AtRad5a might be functionally homologous to ScRad5.
Neurotrophins are potent survival factors for developing and injured neurons. However, they are not being used to treat neurodegenerative diseases because of difficulties in administration and numerous side effects that have been encountered in previous clinical trials. Their biological activities use Trk (tropomyosin-related kinase) transmembrane tyrosine kinases. Therefore, one alternative approach is to use transactivation pathways such as adenosine 2A receptor agonists, which can activate Trk receptor signaling independent of neurotrophin binding. However, the relevance in vivo and applicability of these transactivation events during neurodegenerative and injury conditions have never been extensively studied. Here we demonstrate that motoneuron survival after facial nerve lesioning is significantly enhanced by transactivation of Trk receptor tyrosine kinases by adenosine agonists. Moreover, survival of motoneurons directly required the activation of the BDNF receptor TrkB and an increase in Akt (AKT8 virus oncogene cellular homolog) activity. The ability of small molecules to activate a trophic response by using Trk signaling provides a unique mechanism to promote survival signals in motoneurons and suggests new strategies for using transactivation in neurodegenerative diseases.brain-derived neurotrophic factor ͉ transactivation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.