The current projections of climate change might exceed the ability of European forest trees to adapt to upcoming environmental conditions. However, stomatal and leaf morphological traits could greatly influence the acclimation potential of forest tree species subjected to global warming, including the single most important forestry species in Europe, European beech.
We analysed stomatal (guard cell length, stomatal density and potential conductance index) and leaf (leaf area, leaf dry weight and leaf mass per area) morphological traits of ten provenances from two provenance trials with contrasting climates between 2016 and 2020. The impact of meteorological conditions of the current and preceding year on stomatal and leaf traits was tested by linear and quadratic regressions. Ecodistance was used to capture the impact of adaptation after the transfer of provenances to new environments.
Interactions of trial–provenance and trial–year factors were significant for all measured traits. Guard cell length was lowest and stomatal density was highest across beech provenances in the driest year, 2018. Adaptation was also reflected in a significant relationship between aridity ecodistance and measured traits. Moreover, the meteorological conditions of the preceding year affected the interannual variability of stomatal and leaf traits more than the meteorological conditions of the spring of the current year, suggesting the existence of plant stress memory.
High intraspecific variability of stomatal and leaf traits controlled by the interaction of adaptation, acclimation and plant memory suggests a high acclimation potential of European beech provenances under future conditions of global climate change.
Partitioning of evapotranspiration (ET) into transpiration (T) and residual evaporation (E) is a challenging but important task in order to assess the dynamics of increasingly scarce water resources in forest ecosystems. The T/ET ratio has been linked to the ecosystem water use efficiency of temperate forests, and thus is an important index for understanding utilization of water resources under global climate change. We used concurrent sap flow and eddy-covariance measurements to quantify the ET partitioning in pure European beech forest during the 2019–2020 period. The sap flow data were upscaled to stand level T and combined with stand level ET to calculate the T/ET ratio. We analysed intra-annual dynamics, the effect of seasonality and the impact of meteorological conditions on T, ET and T/ET. Annual T/ET of a pure European beech ecosystem was 0.48, falling at the lower end of reported global T/ET values for forest ecosystems. T/ET showed significant seasonal differences throughout spring (T/ET = 0.28), summer (T/ET = 0.62) and autumn (T/ET = 0.35). Air temperature (R2 = 0.45–0.63), VPD (R2 = 0.47–0.6) and PAR (R2 = 0.32–0.63) affected the daily dynamics of T, ET and T/ET; however, soil water content (SWC) had no significant effect. Mature European beech trees showed more anisohydric behaviour and relatively stable T/ET, even under decreasing SWC. The results improve the understanding of ecosystem scale T, ET and T/ET intra-annual dynamics and environmental constraints in anisohydric mature European beech.
European beech is one of the most common tree species in Europe and is generally suggested to play even more of a prominent role in forestry in the future. It seems to have the potential to partially replace Norway spruce, as it is less sensitive to expected warmer and drier conditions. It is, however, not well known in which regions these new plantings would be particularly favourable and if specific provenances may be better adapted to the new conditions than others. Therefore, we estimated the potential early height growth under climate conditions in 2040–2060 for 20 beech provenances across a region covering the Czech Republic and Slovakia. This Central European region is expected to experience considerably drier and warmer conditions in the future. For this exercise, we implemented a new neural network model developed from height growth information obtained from the open-access BeechCOSTe52 database. The simulations are driven by past and future climate data obtained from the WorldClim database of historical climate data and future climate projections. Simulations revealed that provenances originating from drier regions performed on average significantly better than those from regions with good water supply. Moreover, provenances originating from drier regions had a particularly large advantage in the relatively arid regions of Central Czechia and Southern Slovakia. We can also confirm that all provenances showed a high phenotypic plasticity of height growth across the whole investigated region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.