[1] We review the standard nitrogen dioxide (NO 2 ) data product (Version 1.0.), which is based on measurements made in the spectral region 415-465 nm by the Ozone Monitoring Instrument (OMI) on the NASA Earth Observing System-Aura satellite. A number of ground-and aircraft-based measurements have been used to validate the data product's three principal quantities: stratospheric, tropospheric, and total NO 2 column densities under nearly or completely cloud-free conditions. The validation of OMI NO 2 is complicated by a number of factors, the greatest of which is that the OMI observations effectively average the NO 2 over its field of view (minimum 340 km 2 ), while a ground-based instrument samples at a single point. The tropospheric NO 2 field is often very inhomogeneous, varying significantly over tens to hundreds of meters, and ranges from <10 15 cm À2 over remote, rural areas to >10 16 cm À2 over urban and industrial areas. Because of OMI's areal averaging, when validation measurements are made near NO 2 sources the OMI measurements are expected to underestimate the ground-based, and this is indeed seen. Further, we use several different instruments, both new and mature, which might give inconsistent NO 2 amounts; the correlations between nearby instruments is 0.8-0.9. Finally, many of the validation data sets are quite small and span a very short length of time; this limits the statistical conclusions that can be drawn from them. Despite these factors, good agreement is generally seen between the OMI and ground-based measurements, with OMI stratospheric NO 2 underestimated by about 14% and total and tropospheric columns underestimated by 15-30%. Typical correlations between OMI NO 2 and ground-based measurements are generally >0.6.
Abstract. Iodine species in the troposphere are linked to ozone depletion and new particle formation. In this study, a full year of iodine monoxide (IO) columns retrieved from measurements of the SCIAMACHY satellite instrument is presented, coupled with a discussion of their uncertainties and the detection limits. The largest amounts of IO are found near springtime in the Antarctic. A seasonal variation of iodine monoxide in Antarctica is revealed with high values in springtime, slightly less IO in the summer period and again larger amounts in autumn. In winter, no elevated IO levels are found in the areas accessible to satellite measurements. This seasonal cycle is in good agreement with recent groundbased measurements in Antarctica. In the Arctic region, no elevated IO levels were found in the period analysed. This implies that different conditions with respect to iodine release exist in the two Polar Regions. To investigate possible release mechanisms, comparisons of IO columns with those of tropospheric BrO, and ice coverage are described and discussed. Some parallels and interesting differences between IO and BrO temporal and spatial distributions are identified. Overall, the large spatial coverage of satellite retrieved IO data and the availability of a long-term dataset provide new insight about the abundances and distributions of iodine compounds in the troposphere.
Abstract. In June 2009, 22 spectrometers from 14 institutes measured tropospheric and stratospheric NO 2 from the ground for more than 11 days during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI), at Cabauw, NL (51.97 • N, 4.93 • E). All visible instruments used a common wavelength range and set of cross sections for the spectral analysis. Most of the instruments were of the multi-axis design with analysis by differential spectroscopy software (MAX-DOAS), whose nonzenith slant columns were compared by examining slopes of their least-squares straight line fits to mean values of a selection of instruments, after taking 30-min averages. Zenith slant columns near twilight were compared by fits Correspondence to: H. K. Roscoe (h.roscoe@bas.ac.uk) to interpolated values of a reference instrument, then normalised by the mean of the slopes of the best instruments. For visible MAX-DOAS instruments, the means of the fitted slopes for NO 2 and O 4 of all except one instrument were within 10% of unity at almost all non-zenith elevations, and most were within 5%. Values for UV MAX-DOAS instruments were almost as good, being 12% and 7%, respectively. For visible instruments at zenith near twilight, the means of the fitted slopes of all instruments were within 5% of unity. This level of agreement is as good as that of previous intercomparisons, despite the site not being ideal for zenith twilight measurements. It bodes well for the future of measurements of tropospheric NO 2 , as previous intercomparisons were only for zenith instruments focussing on stratospheric NO 2 , with their longer heritage.Published by Copernicus Publications on behalf of the European Geosciences Union.
Environment (RIVM) NO 2 lidar. We show that NO 2 from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) compares well with in situ measurements. We show that different MAX-DOAS instruments, operating simultaneously during the campaign, give very similar results. We also provide unique information on the spatial homogeneity and the vertical and temporal variability of NO 2 , showing that during a number of days, the NO 2 columns derived from measurements in different directions varied significantly, which implies that, under polluted conditions, measurements in one single azimuth direction are not always representative for the averaged field that the satellite observes. In addition, we show that there is good agreement between tropospheric NO 2 from OMI and MAX-DOAS, and also between total NO 2 from OMI and directsun observations. Observations of the aerosol optical thickness (AOT) show that values derived with three ground-based instruments correspond well with each other, and with aerosol optical thicknesses observed by OMI.
Iodine compounds were measured above, below and within the sea ice of the Weddell Sea during a cruise in 2009, to make progress in elucidating the mechanism of local enhancement and volatilisation of iodine. I<sub>2</sub> mixing ratios of up to 12.4 pptv were measured 10 m above the sea ice, and up to 31 pptv was observed above surface snow on the nearby Brunt Ice Shelf – large amounts. Atmospheric IO of up to 7 pptv was measured from the ship, and the average sum of HOI and ICl was 1.9 pptv. These measurements confirm the Weddell Sea as an iodine hotspot. Average atmospheric concentrations of CH<sub>3</sub>I, C<sub>2</sub>H<sub>5</sub>I, CH<sub>2</sub>ICl, 2-C<sub>3</sub>H<sub>7</sub>I, CH<sub>2</sub>IBr and 1-C<sub>3</sub>H<sub>7</sub>I were each 0.2 pptv or less. On the Brunt Ice Shelf, enhanced concentrations of CH<sub>3</sub>I and C<sub>2</sub>H<sub>5</sub>I (up to 0.5 and 1 pptv respectively) were observed in firn air, with a diurnal profile that suggests the snow may be a source. In the sea ice brine, iodocarbons concentrations were over 10 times those of the sea water below. The sum of iodide + iodate was depleted in sea ice samples, suggesting some missing iodine chemistry. Flux calculations suggest I<sub>2</sub> dominates the iodine atom flux to the atmosphere, but models cannot reconcile the observations and suggest either a missing iodine source or other deficiencies in our understanding of iodine chemistry. The observation of new particle formation, consistent with the model predictions, strongly suggests an iodine source. This combined study of iodine compounds is the first of its kind in this unique region of sea ice rich in biology and rich in iodine chemistry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.