Aneuploidy, referring to unbalanced chromosome numbers, represents a class of genetic variation associated with cancer, birth defects and eukaryotic microbes 1 – 4 . Whereas it is known that each aneuploid chromosome stoichiometry can give rise to a distinct pattern of gene expression and phenotypic profile 4 , 5 , it has remained a fundamental question as to whether there are common cellular defects associated with aneuploidy. In this study, we designed a unique strategy that allowed for the observation of common transcriptome changes of aneuploidy by averaging out karyotype-specific dosage effects using aneuploid yeast cell populations with random and diverse chromosome stoichiometry. This analysis uncovered a common aneuploidy gene-expression (CAGE) signature suggestive of hypo-osmotic stress. Consistently, aneuploid yeast exhibited increased plasma membrane (PM) stress leading to impaired endocytosis, and this defect was also observed in aneuploid human cells. Thermodynamic modeling showed that hypo-osmotic-like stress is a general outcome of proteome imbalance caused by aneuploidy and predicted a ploidy-cell size relationship observed in yeast and aneuploid cancer cells. A genome-wide screen further uncovered a general dependency of aneuploid cells on a pathway of ubiquitin-mediated endocytic recycling of nutrient transporters. Loss of this pathway coupled with the aneuploidy-inherent endocytic defect leads to marked alteration of intracellular nutrient homeostasis.
Aneuploidy, a deviation from a balanced genome by either gain or loss of chromosomes, is generally associated with impaired fitness and developmental defects in eukaryotic organisms. While the general physiological impact of aneuploidy remains largely elusive, many phenotypes associated with aneuploidy link to a common theme of stress adaptation. Here, we review previously identified mechanisms and observations related to aneuploidy, focusing on the highly diverse eukaryotes, fungi. Fungi, which have conquered virtually all environments, including several hostile ecological niches, exhibit widespread aneuploidy and employ it as an adaptive strategy under severe stress. Gambling with the balance between genome plasticity and stability has its cost and in fact, most aneuploidies have fitness defects. How can this fitness defect be reconciled with the prevalence of aneuploidy in fungi? It is likely that the fitness cost of the extra chromosomes is outweighed by the advantage they confer under life-threatening stresses. In fact, once the selective pressures are withdrawn, aneuploidy is often lost and replaced by less drastic mutations that possibly incur a lower fitness cost. We discuss representative examples across hostile environments, including medically and industrially relevant cases, to highlight potential adaptive mechanisms in aneuploid yeast.
Aneuploidy and epigenetic alterations have long been associated with carcinogenesis, but it was unknown whether aneuploidy could disrupt the epigenetic states required for cellular differentiation. In this study, we found that ~3% of random aneuploid karyotypes in yeast disrupt the stable inheritance of silenced chromatin during cell proliferation. Karyotype analysis revealed that this phenotype was significantly correlated with gains of chromosomes III and X. Chromosome X disomy alone was sufficient to disrupt chromatin silencing and yeast mating-type identity as indicated by a lack of growth response to pheromone. The silencing defect was not limited to cryptic mating type loci and was associated with broad changes in histone modifications and chromatin localization of Sir2 histone deacetylase. The chromatin-silencing defect of disome X can be partially recapitulated by an extra copy of several genes on chromosome X. These results suggest that aneuploidy can directly cause epigenetic instability and disrupt cellular differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.