Kinked-stepped, high Miller index surfaces of metal crystals are chiral and, therefore, exhibit enantiospecific properties. Previous temperature-programmed desorption (TPD) spectra have shown that the desorption energies of R-3-methylcyclohexanone (R-3-MCHO) on the chiral Cu(643)(R) and Cu(643)(S) surfaces are enantiospecific (J. Am. Chem. Soc. 2002, 124, 2384). Here, a comparison of the TPD spectra from Cu(111), Cu(221), Cu(533), Cu(653)(R&S), and Cu(643)(R&S) surfaces reveals that the enantiospecific desorption occurs from the chiral kink sites on the Cu(643) surfaces. Titration of the chiral kink sites with I atoms confirms this assignment of desorption features in the TPD spectra. Finally, the enantiospecific difference in the desorption energies of R- and S-3-MCHO has been used as the basis for demonstration of an enantioselective, kinetic separation of racemic 3-MCHO into its purified components during adsorption and desorption on the Cu(643)(R&S) surfaces.
The desorption kinetics of a chiral compound, R-3-methylcyclohexanone (R-3MCHO), have been measured on both enantiomers of seven chiral Cu(hkl) surfaces and on nine achiral Cu single crystal surfaces with surface structures that collectively span the various regions of the stereographic triangle. The naturally chiral surfaces have terrace-step-kink structures formed by all six possible combinations of the three low Miller index microfacets. The chirality of the kink sites is defined by the rotational orientation of the (1 1 1), (1 0 0) and (1 1 0) microfacets forming the kink. R-3MCHO adsorbs reversibly on these Cu surfaces and temperature programmed desorption has been used to measure its desorption energetics from the chiral kink sites. The desorption energies from the R- and S-kink sites are enantiospecific, [Formula: see text], on the chiral surfaces. The magnitude of the enantiospecificity is [Formula: see text] ≈ 1 kJ mol on all seven chiral surfaces. However, the values of [Formula: see text] are sensitive to elements of the surface structure other than just their sense of chirality as defined by the rotational orientation of the low Miller index microfacets forming the kinks; [Formula: see text] changes sign within the set of surfaces of a given chirality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.