Concrete is extremely vulnerable against impact loading due to its low tensile strength and pronounced brittleness. The application of thin strengthening layers, containing Textile Reinforced Concrete (TRC) and Strain-Hardening Cement-based Composites (SHCCs) in a ductile cement-based composite, is a promising solution to enhance the impact resistance of existing concrete structures. Three-dimensional (3D) textile structures exhibit numerous advantages over two-dimensional (2D) ones, most importantly higher shear, bending and energy absorption capacity, hence, appear to be instrumental in providing sufficient reinforcement to the target strengthening layers. However, design variability and optimization possibility of available 3D textile reinforcement are restricted. This paper presents the development of novel textile-based 3D truss reinforcement that can overcome these limitations. On the basis of woven 3D cellular structures, innovative pyramidal 3D truss reinforcement with favorable load-bearing capacity as well as notable energy absorption capability is developed and successfully realized. To investigate the feasibility and efficacy, cement-based composite consisting SHCC and newly developed pyramidal 3D truss reinforcement is prepared and tested under high-speed tensile loading as well as transversal impact loading. The experimental results show that woven 3D truss reinforcement is highly compatible with SHCC, and significantly enhances its impact resistance. Furthermore, SHCC reinforced with novel pyramidal 3D truss structure remarkably outperforms that with 2D carbon reinforcing structure approved for commercial use.
Fibre-reinforced composites (FRCs) are already well established in several industrial sectors such as aerospace, automotive, plant engineering, shipbuilding and construction. The technical advantages of FRCs over metallic materials are well researched and proven. The key factors for an even wider industrial application of FRCs are the maximisation of resource and cost efficiency in the production and processing of the textile reinforcement materials. Due to its technology, warp knitting is the most productive and therefore cost-effective textile manufacturing process. In order to produce resource-efficient textile structures with these technologies, a high degree of prefabrication is required. This reduces costs by reducing the number of ply stacks, and by reducing the number of extra operations through final path and geometric yarn orientation of the preforms. It also reduces waste in post-processing. Furthermore, a high degree of prefabrication through functionalisation offers the potential to extend the application range of textile structures as purely mechanical reinforcements by integrating additional functions. So far, there is a gap in terms of an overview of the current state-of-the-art of relevant textile processes and products, which this work aims to fill. The focus of this work is therefore to provide an overview of warp knitted 3D structures.
In the textile sector, the sustainable development and production of high-performance and high-quality textiles has become increasingly important. To enable the processing of new yarn materials at high production speeds, the in-depth understanding of the relationships between machine elements, yarn path, and yarn tension is required. Therefore, the aim of this paper is to analyze the interactions between the warp knitting machine unit and the yarn path during the stitch formation process by means of theoretical modeling and experimental investigation. A vector-based model has been developed to describe the kinematic yarn path and its correlation with yarn demand during the stitch formation process. The model is validated by measurements of yarn path and yarn tension on a warp knitting machine. The model is used to identify both machine and yarn guide elements that influence stitch formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.