SummaryCell migration is commonly accompanied by protrusion of membrane ruffles and lamellipodia. In two-dimensional migration, protrusion of these thin sheets of cytoplasm is considered relevant to both exploration of new space and initiation of nascent adhesion to the substratum. Lamellipodium formation can be potently stimulated by Rho GTPases of the Rac subfamily, but also by RhoG or Cdc42. Here we describe viable fibroblast cell lines genetically deficient for Rac1 that lack detectable levels of Rac2 and Rac3. Rac-deficient cells were devoid of apparent lamellipodia, but these structures were restored by expression of either Rac subfamily member, but not by Cdc42 or RhoG. Cells deficient in Rac showed strong reduction in wound closure and random cell migration and a notable loss of sensitivity to a chemotactic gradient. Despite these defects, Rac-deficient cells were able to spread, formed filopodia and established focal adhesions. Spreading in these cells was achieved by the extension of filopodia followed by the advancement of cytoplasmic veils between them. The number and size of focal adhesions as well as their intensity were largely unaffected by genetic removal of Rac1. However, Rac deficiency increased the mobility of different components in focal adhesions, potentially explaining how Rac – although not essential – can contribute to focal adhesion assembly. Together, our data demonstrate that Rac signaling is essential for lamellipodium protrusion and for efficient cell migration, but not for spreading or filopodium formation. Our findings also suggest that Rac GTPases are crucial to the establishment or maintenance of polarity in chemotactic migration.
BackgroundGene expression in plant chloroplasts and mitochondria is affected by RNA editing. Numerous C-to-U conversions, accompanied by reverse U-to-C exchanges in some plant clades, alter the genetic information encoded in the organelle genomes. Predicting and analyzing RNA editing, which ranges from only few sites in some species to thousands in other taxa, is bioinformatically demanding.ResultsHere, we present major enhancements and extensions of PREPACT, a WWW-based service for analysing, predicting and cataloguing plant-type RNA editing. New features in PREPACT’s core include direct GenBank accession query input and options to restrict searches to candidate U-to-C editing or to sites where editing has been documented previously in the references. The reference database has been extended by 20 new organelle editomes. PREPACT 3.0 features new modules “EdiFacts” and “TargetScan”. EdiFacts integrates information on pentatricopeptide repeat (PPR) proteins characterized as site-specific RNA editing factors. PREPACT’s editome references connect into EdiFacts, linking editing events to specific co-factors where known. TargetScan allows position-weighted querying for sequence motifs in the organelle references, optionally restricted to coding regions or sequences around editing sites, or in queries uploaded by the user. TargetScan is mainly intended to evaluate and further refine the proposed PPR-RNA recognition code but may be handy for other tasks as well. We present an analysis for the immediate sequence environment of more than 15,000 documented editing sites finding strong and different bias in the editome data sets.ConclusionsWe exemplarily present the novel features of PREPACT 3.0 aimed to enhance the analyses of plant-type RNA editing, including its new modules EdiFacts integrating information on characterized editing factors and TargetScan aimed to analyse RNA editing site recognition specificities.Electronic supplementary materialThe online version of this article (10.1186/s12859-018-2244-9) contains supplementary material, which is available to authorized users.
BackgroundRNA editing by cytidine-to-uridine conversions is an essential step of RNA maturation in plant organelles. Some 30–50 sites of C-to-U RNA editing exist in chloroplasts of flowering plant models like Arabidopsis, rice or tobacco. We now predicted significantly more RNA editing in chloroplasts of early-branching angiosperm genera like Amborella, Calycanthus, Ceratophyllum, Chloranthus, Illicium, Liriodendron, Magnolia, Nuphar and Zingiber. Nuclear-encoded RNA-binding pentatricopeptide repeat (PPR) proteins are key editing factors expected to coevolve with their cognate RNA editing sites in the organelles.ResultsWith an extensive chloroplast transcriptome study we identified 138 sites of RNA editing in Amborella trichopoda, approximately the 3- to 4-fold of cp editing in Arabidopsis thaliana or Oryza sativa. Selected cDNA studies in the other early-branching flowering plant taxa furthermore reveal a high diversity of early angiosperm RNA editomes. Many of the now identified editing sites in Amborella have orthologues in ferns, lycophytes or hornworts. We investigated the evolution of CRR28 and RARE1, two known Arabidopsis RNA editing factors responsible for cp editing events ndhBeU467PL, ndhDeU878SL and accDeU794SL, respectively, all of which we now found conserved in Amborella. In a phylogenetically wide sampling of 65 angiosperm genomes we find evidence for only one single loss of CRR28 in chickpea but several independent losses of RARE1, perfectly congruent with the presence of their cognate editing sites in the respective cpDNAs.ConclusionChloroplast RNA editing is much more abundant in early-branching than in widely investigated model flowering plants. RNA editing specificity factors can be traced back for more than 120 million years of angiosperm evolution and show highly divergent patterns of evolutionary losses, matching the presence of their target editing events.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0589-0) contains supplementary material, which is available to authorized users.
BackgroundC-to-U RNA editing in mitochondria and chloroplasts and the nuclear-encoded, RNA-binding PPR proteins acting as editing factors present a wide field of co-evolution between the different genetic systems in a plant cell. Recent studies on chloroplast editing factors RARE1 and CRR28 addressing one or two chloroplast editing sites, respectively, found them strictly conserved among 65 flowering plants as long as one of their RNA editing targets remained present.ResultsExtending the earlier sampling to 117 angiosperms with high-quality genome or transcriptome data, we find more evidence confirming previous conclusions but now also identify cases for expected evolutionary transition states such as retention of RARE1 despite loss of its editing target or the degeneration of CRR28 truncating its carboxyterminal DYW domain. The extended angiosperm set was now used to explore CLB19, an “E+”-type PPR editing factor targeting two chloroplast editing sites, rpoAeU200SF and clpPeU559HY, in Arabidopsis thaliana. We found CLB19 consistently conserved if one of the two targets was retained and three independent losses of CLB19 after elimination of both targets. The Ericales show independent regains of the ancestrally lost clpPeU559HY editing, further explaining why multiple-target editing factors are lost much more rarely than single target factors like RARE1. The retention of CLB19 despite loss of both editing targets in some Ericaceae, Apocynaceae and in Camptotheca (Nyssaceae) likely represents evolutionary transitions. However, the retention of CLB19 after a phylogenetic deep loss in the Poaceae rather suggests a yet unrecognized further editing target, for which we suggest editing event ndhAeU473SL.ConclusionExtending the scope of studies on plant organelle RNA editing to further taxa and additional nuclear cofactors reveals expected evolutionary transitions, strikingly different evolutionary dynamics for multiple-target editing factors like CLB19 and CRR28 and suggests additional functions for editing factor CLB19 among the Poaceae.Electronic supplementary materialThe online version of this article (10.1186/s12862-018-1203-4) contains supplementary material, which is available to authorized users.
Nuclear-encoded pentatricopeptide repeat (PPR) proteins are site-specific factors for C-to-U RNA editing in plant organelles coevolving with their targets. Losing an editing target by C-to-T conversion allows for eventual loss of its editing factor, as recently confirmed for editing factors CLB19, CRR28, and RARE1 targeting ancient chloroplast editing sites in flowering plants. Here, we report on alternative evolutionary pathways for DOT4 addressing rpoC1eU488SL, a chloroplast editing site in the RNA polymerase β′ subunit mRNA. Upon loss of rpoC1eU488SL by C-to-T conversion, DOT4 got lost multiple times independently in angiosperm evolution with intermediate states of DOT4 orthologs in various stages of degeneration. Surprisingly, we now also observe degeneration and loss of DOT4 despite retention of a C in the editing position (in Carica, Coffea, Vicia, and Spirodela). We find that the cytidine remains unedited, proving that DOT4 was not replaced by another editing factor. Yet another pathway of DOT4 evolution is observed among the Poaceae. Although the rpoC1eU488SL edit has been lost through C-to-T conversion, DOT4 orthologs not only remain conserved but also have their array of PPRs extended by six additional repeats. Here, the loss of the ancient target has likely allowed DOT4 to adapt for a new function. We suggest rps3 antisense transcripts as previously demonstrated in barley (Hordeum vulgare) arising from promotor sequences newly emerging in the rpl16 intron of Poaceae as a new candidate target for the extended PPR stretch of DOT4. Altogether, DOT4 and its target show more flexible pathways for evolution than the previously explored editing factors CLB19, CRR28, and RARE1. Certain plant clades (e.g., Amaranthus, Vaccinium, Carica, the Poaceae, Fabales, and Caryophyllales) show pronounced dynamics in the evolution of editing sites and corresponding factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.