RNA editing in plant organelles is an enigmatic process leading to conversion of cytidines into uridines. Editing specificity is determined by proteins; both those known so far are pentatricopeptide repeat (PPR) proteins. The enzyme catalysing RNA editing in plants is still totally unknown. We propose that the DYW domain found in many higher plant PPR proteins is the missing catalytic domain. This hypothesis is based on two compelling observations: (i) the DYW domain contains invariant residues that match the active site of cytidine deaminases; (ii) the phylogenetic distribution of the DYW domain is strictly correlated with RNA editing.
The analysis of the mitochondrial DNA of Isoetes engelmannii as a first representative of the lycophytes recently revealed very small introns and indications for extremely frequent RNA editing. To analyze functionality of intron splicing and the extent of RNA editing in I. engelmannii, we performed a comprehensive analysis of its mitochondrial transcriptome. All 30 groups I and II introns were found to be correctly removed, showing that intron size reduction does not impede splicing. We find that mRNA editing affects 1782 sites, which lead to a total of 1406 changes in codon meanings. This includes the removal of stop codons from 23 of the 25 mitochondrial protein encoding genes. Comprehensive sequence analysis of multiple cDNAs per locus allowed classification of partially edited sites as either inefficiently edited but relevant or as non-specifically edited at mostly low frequencies. Abundant RNA editing was also found to affect tRNAs in hitherto unseen frequency, taking place at 41 positions in tRNA-precursors, including the first identification of U-to-C exchanges in two tRNA species. We finally investigated the four group II introns of the nad7 gene and could identify 27 sites of editing, most of which improve base pairing for proper secondary structure formation.
The pyrimidine exchange type of RNA editing in land plant (embryophyte) organelles has largely remained an enigma with respect to its biochemical mechanisms, the underlying specificities, and its raison d'être. Apparently arising with the earliest embryophytes, RNA editing is conspicuously absent in one clade of liverworts, the complex thalloid Marchantiidae. Several lines of evidence suggest that the large gene family of organelle-targeted RNA-binding pentatricopeptide repeat (PPR) proteins plays a fundamental role in the sequence-specific editing of organelle transcripts. We here describe the identification of PPR protein genes with plant-specific carboxyterminal (C-terminal) sequence signatures (E, E+, and DYW domains) in ferns, lycopodiophytes, mosses, hornworts, and jungermanniid liverworts, one subclass of the basal most clade of embryophytes, on DNA and cDNA level. In contrast, we were unable to identify these genes in a wide sampling of marchantiid liverworts (including the phylogenetic basal genus Blasia)--taxa for which no RNA editing is observed in the organelle transcripts. On the other hand, we found significant diversity of this type of PPR proteins also in Haplomitrium, a genus with an extremely high rate of RNA editing and a phylogenetic placement basal to all other liverworts. Although the presence of modularly extended PPR proteins correlates well with organelle RNA editing, the now apparent complete loss of an entire gene family from one clade of embryophytes, the marchantiid liverworts, remains puzzling.
BackgroundRNA editing by cytidine-to-uridine conversions is an essential step of RNA maturation in plant organelles. Some 30–50 sites of C-to-U RNA editing exist in chloroplasts of flowering plant models like Arabidopsis, rice or tobacco. We now predicted significantly more RNA editing in chloroplasts of early-branching angiosperm genera like Amborella, Calycanthus, Ceratophyllum, Chloranthus, Illicium, Liriodendron, Magnolia, Nuphar and Zingiber. Nuclear-encoded RNA-binding pentatricopeptide repeat (PPR) proteins are key editing factors expected to coevolve with their cognate RNA editing sites in the organelles.ResultsWith an extensive chloroplast transcriptome study we identified 138 sites of RNA editing in Amborella trichopoda, approximately the 3- to 4-fold of cp editing in Arabidopsis thaliana or Oryza sativa. Selected cDNA studies in the other early-branching flowering plant taxa furthermore reveal a high diversity of early angiosperm RNA editomes. Many of the now identified editing sites in Amborella have orthologues in ferns, lycophytes or hornworts. We investigated the evolution of CRR28 and RARE1, two known Arabidopsis RNA editing factors responsible for cp editing events ndhBeU467PL, ndhDeU878SL and accDeU794SL, respectively, all of which we now found conserved in Amborella. In a phylogenetically wide sampling of 65 angiosperm genomes we find evidence for only one single loss of CRR28 in chickpea but several independent losses of RARE1, perfectly congruent with the presence of their cognate editing sites in the respective cpDNAs.ConclusionChloroplast RNA editing is much more abundant in early-branching than in widely investigated model flowering plants. RNA editing specificity factors can be traced back for more than 120 million years of angiosperm evolution and show highly divergent patterns of evolutionary losses, matching the presence of their target editing events.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0589-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.