Escherichia coli sequence type 131 (ST131), an emergent multidrug-resistant extraintestinal pathogen, has spread epidemically among humans and was recently isolated from companion animals. To assess for humancompanion animal commonality among ST131 isolates, 214 fluoroquinolone-resistant extraintestinal E. coli isolates (205 from humans, 9 from companion animals) from diagnostic laboratories in Australia, provisionally identified as ST131 by PCR, selectively underwent PCR-based O typing and bla CTX-M-15 detection. A subset then underwent multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) analysis, extended virulence genotyping, antimicrobial susceptibility testing, and fluoroquinolone resistance genotyping. All isolates were O25b positive, except for two O16 isolates and one O157 isolate, which (along with six O25b-positive isolates) were confirmed by MLST to be ST131. Only 12% of isolates (25 human, 1 canine) exhibited bla CTX-M-15 . PFGE analysis of 20 randomly selected human and all 9 companion animal isolates showed multiple instances of >94% profile similarity across host species; 12 isolates (6 human, 6 companion animal) represented pulsotype 968, the most prevalent ST131 pulsotype in North America (representing 23% of a large ST131 reference collection). Virulence gene and antimicrobial resistance profiles differed minimally, without host species specificity. The analyzed ST131 isolates also exhibited a conserved, host species-independent pattern of chromosomal fluoroquinolone resistance mutations. However, eight (89%) companion animal isolates, versus two (10%) human isolates, possessed the plasmid-borne qnrB gene (P < 0.001). This extensive across-species strain commonality, plus the similarities between Australian and non-Australian ST131 isolates, suggest that ST131 isolates are exchanged between humans and companion animals both within Australia and intercontinentally.
ABSTRACTFluoroquinolone (FQ)-resistant extraintestinal pathogenicEscherichia coli(FQrExPEC) strains from phylogenetic group B2 are undergoing epidemic spread. Isolates belonging to phylogenetic group B2 are generally more virulent than otherE. coliisolates; therefore, resistance to FQs among group B2 isolates is concerning. Although clonal expansion of sequence type 131 (ST131) is a major factor, the contribution of additional clonal groups has not been quantified. Group B2 FQrExPEC isolates from humans (n= 250) and dogs (n= 12) in Australia were screened for ST131, a recently recognized and rapidly emerging multidrug-resistant and virulent clonal group that is important in both human and companion animal medicine. Non-ST131 isolates underwent virulence genotyping, PCR-based O typing, partial multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and FQ resistance mechanism analysis. Of 49 non-ST131 isolates (45 human, 4 canine), 49% (24 human, 2 canine) represented O-type O75 and exhibited conserved virulence genotypes (F10papAallele,iha,fimH,sat,vat,fyuA,iutA,kpsMII,usp,ompT,malX, K1/K5 capsule) and MLST allele profiles corresponding with clonal complex CC14. Two clusters, each containing canine and human isolates, were identified by PFGE (differentiated by K1 and K5 capsules). Australian FQrO75 isolates exhibited commonality with an historical FQ-susceptible O75 urosepsis isolate (also CC14). The isolation from humans and dogs of highly similar FQrderivatives of the classic O75:K1/K5 (CC14) ExPEC lineage suggests recent acquisition of FQ resistance and potential cross-host-species transfer. This lineage should be targeted with ST131 in future epidemiological investigations of FQrExPEC.
Compared with ciprofloxacin, levofloxacin and moxifloxacin, finafloxacin shows higher activity especially at pH 5.8 against Escherichia coli mutants expressing known fluoroquinolone resistance determinants alone and in combinations.
Uncomplicated urinary tract infections are typically monobacterial and are predominantly caused by Escherichia coli. Although several effective treatment options are available, the rates of antibiotic resistance in urinary isolates of E. coli have increased during the last decade. Knowledge of the actual local rates of antibiotic resistant pathogens as well as the underlying mechanisms are important factors in addition to the geographical location and the health state of the patient for choosing the most effective antibiotic treatment. Recommended treatment options include trimethoprim alone or in combination with sulfamethoxazol, fluoroquinolones, β-lactams, fosfomycin-trometamol, and nitrofurantoin. Three basic mechanisms of resistance to all antibiotics are known, i.e., target alteration, reduced drug concentration and inactivation of the drug. These mechanisms—alone or in combination—contribute to resistance against the different antibiotic classes. With increasing prevalence, combinations of resistance mechanisms leading to multiple drug resistant (mdr) pathogens are being detected and have been associated with reduced fitness under in vitro situations. However, mdr clones among clinical isolates such as E. coli sequence type 131 (ST131) have successfully adapted in fitness and growth rate and are rapidly spreading as a worldwide predominating clone of extraintestinal pathogenic E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.