BackgroundIt is widely accepted that neuroinflammatory processes play an important role in the pathogenesis of Alzheimer’s disease (AD) and high levels of cytokines and chemokines are detected around Aβ plaques.MethodsAs neuroinflammation is involved in the development and progression of AD, we measured the pro-inflammatory cytokines interleukin 1β (IL-1β), IL-8 and tumor necrosis factor α (TNF-α) in serum and cerebrospinal fluid (CSF) samples from 45 AD patients and 53 age-matched control subjects using a highly sensitive multiplex electrochemiluminescence assay. To address the association with disease progression we correlated cognitive status with cytokine levels.ResultsCSF as well as serum IL-8 levels were found to be significantly lower in AD patients than in controls (p = 0.02). A statistically significant inverse correlation was observed between the CSF level of IL-1β and the MMSE score (rs = -0.03, p = 0.02). We therefore stratified the AD patients by their MMSE scores into three equal groups and found that in the AD group with the most severe cognitive impairment CSF-IL-1β was significantly increased compared to age-matched controls (p < 0.05), whereas in the other investigated groups the increase was not statistically significant.ConclusionOur results confirm data suggesting that cytokine alterations are involved in AD pathogenesis and may be helpful as a biomarker for monitoring disease progression.Electronic supplementary materialThe online version of this article (doi:10.1186/s12883-016-0707-z) contains supplementary material, which is available to authorized users.
BackgroundAlzheimer’s disease (AD) is a neurodegenerative disorder, primarily affecting memory. That disorder is thought to be a consequence of neuronal network disturbances and synapse loss. Decline in cognitive function is associated with a high burden of neuropsychiatric symptoms (NPSs) such as depression. The cyclic nucleotides cyclic adenosine-3',5'-monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) are essential second messengers that play a crucial role in memory processing as well as synaptic plasticity and are potential therapeutic targets. Biomarkers that are able to monitor potential treatment effects and that reflect the underlying pathology are of crucial interest.MethodsIn this study, we measured cGMP and cAMP in cerebrospinal fluid (CSF) in a cohort of 133 subjects including 68 AD patients and 65 control subjects. To address the association with disease progression we correlated cognitive status with cyclic nucleotide levels. Because a high burden of NPSs is associated with decrease in cognitive function, we performed an exhaustive evaluation of AD-relevant marker combinations in a depressive subgroup.ResultsWe show that cGMP, but not cAMP, levels in the CSF of AD patients are significantly reduced compared with the control group. Reduced cGMP levels in AD patients correlate with memory impairment based on Mini-Mental State Examination score (r = 0.17, p = 0.048) and tau as a marker of neurodegeneration (r = –0.28, p = 0.001). Moreover, we were able to show that AD patients suffering from current depression show reduced cGMP levels (p = 0.07) and exhibit a higher degree of cognitive impairment than non-depressed AD patients.ConclusionThese results provide further evidence for an involvement of cGMP in AD pathogenesis and accompanying co-morbidities, and may contribute to elucidating synaptic plasticity alterations during disease progression.Electronic supplementary materialThe online version of this article (doi:10.1186/s13195-017-0245-y) contains supplementary material, which is available to authorized users.
Proteolytic processing of amyloid-β precursor protein (APP) by beta-site APP cleaving enzyme 1 (BACE1) is the initial step in the production of amyloid beta (Aβ), which accumulates in senile plaques in Alzheimer’s disease (AD). Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA) proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aβ generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα), sAPPβ, and Aβ upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.
Several age-related neurodegenerative disorders are associated with protein misfolding and aggregation of toxic peptides. α-synuclein (α-syn) aggregation and the resulting cytotoxicity is a hallmark of Parkinson's disease (PD) as well as dementia with Lewy bodies. Rising evidence points to oligomeric and pre-fibrillar forms as the pathogenic species, and oligomer secretion seems to be crucial for the spreading and progression of PD pathology. Recent studies implicate that dysfunctions in endolysosomal/autophagosomal pathways increase α-syn secretion. Mutation in the retromer-complex protein VPS35, which is involved in endosome to Golgi transport, was suggested to cause familial PD. GGA proteins regulate vesicular traffic between Golgi and endosomes and might work as antagonists for retromer complex mediated transport. To investigate the role of the GGAs in the α-syn oligomerization and/or secretion process we utilized protein-fragment complementation assays (PCA). We here demonstrate that GGAs alter α-syn oligomer secretion and α-syn oligomer-mediated toxicity. Specifically, we determined that GGA3 modifies extracellular α-syn species in an exosome-independent manner. Our data suggest that GGA3 drives α-syn oligomerization in endosomal compartments and thus facilitates α-syn oligomer secretion. Preventing the early events in α-syn oligomer release may be a novel approach to halt disease spreading in PD and other synucleinopathies.
Amyloid-β (A4) precursor protein (APP) and low density lipoprotein receptor-related protein 1 (LRP1) have been implicated in pathogenesis of Alzheimer’s disease (AD). They are functionally linked by Fe65, a phosphotyrosine binding domain (PTB) domain containing adaptor protein that binds to intracellular NPxY-motifs of APP and LRP1, thereby influencing expression levels, cellular trafficking and processing. Additionally, Fe65 has been reported to mediate nuclear signaling in combination with intracellular domains of APP and LRP1. We have previously identified another adaptor protein, engulfment adapter PTB domain containing 1 (GULP1). Here, we characterize and compare nuclear trafficking and transactivation of GULP1 and Fe65 together with APP and LRP1 and report differential nuclear trafficking of adaptors when APP or LRP1 are co-expressed. Observed effects are additionally supported by a reporter plasmid based transactivation assay. Our data indicate that Fe65 might have signaling properties together with APP and LRP1, whereas GULP1 mediates only LRP1 transactivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.