Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. The imidazole name was reported by Arthur Rudolf Hantzsch (1857–1935) in 1887. 1, 3-diazole is an amphoteric in nature i.e. it shows both acidic and basic properties. It is a white or colorless solid that is highly soluble in water and other polar solvents. Due to the presence of a positive charge on either of two nitrogen atom, it shows two equivalent tautomeric forms. Imidazole was first named glyoxaline because the first synthesis has been made by glyoxal and ammonia. It is the basic core of some natural products such as histidine, purine, histamine and DNA based structures, etc. Among the different heterocyclic compounds, imidazole is better known due to its broad range of chemical and biological properties. Imidazole has become an important synthon in the development of new drugs. The derivatives of 1, 3-diazole show different biological activities such as antibacterial, antimycobacterial, anti-inflammatory, antitumor, antidiabetic, anti-allergic, antipyretic, antiviral, antioxidant, anti-amoebic, antihelmintic, antifungal and ulcerogenic activities, etc. as reported in the literature. There are different examples of commercially available drugs in the market which contains 1, 3-diazole ring such as clemizole (antihistaminic agent), etonitazene (analgesic), enviroxime (antiviral), astemizole (antihistaminic agent), omeprazole, pantoprazole (antiulcer), thiabendazole (antihelmintic), nocodazole (antinematodal), metronidazole, nitroso-imidazole (bactericidal), megazol (trypanocidal), azathioprine (anti rheumatoid arthritis), dacarbazine (Hodgkin's disease), tinidazole, ornidazole (antiprotozoal and antibacterial), etc. This present review summarized some pharmacological activities and various kinds of synthetic routes for imidazole and their derived products.
As we know that, Oxadiazole or furadi azole ring containing derivatives are an important class of heterocyclic compounds. A heterocyclic five-membered ring that possesses two carbons, one oxygen atom, two nitrogen atoms, and two double bonds is known as oxadiazole. They are derived from furan by the replacement of two methylene groups (= CH) with two nitrogen (-N =) atoms. The aromaticity was reduced with the replacement of these groups in the furan ring to such an extent that it shows conjugated diene character. Four different known isomers of oxadiazole were existed such as 1,2,4-oxadiazole, 1,2,3-oxadiazole, 1,2,5-oxadiazole & 1,3,4-oxadiazole. Among them, 1,3,4-oxadiazoles & 1,2,4-oxadiazoles are better known and more widely studied by the researchers due to their broad range of chemical and biological properties. 1,3,4-oxadiazoles have become important synthons in the development of new drugs. The derivatives of the oxadiazole nucleus (1,3,4-oxadiazoles) show various biological activities such as antibacterial, anti-mycobacterial, antitumor, anti-viral and antioxidant activity, etc. as reported in the literature. There are different examples of commercially available drugs which consist of 1,3,4-oxadiazole ring such as nitrofuran derivative (Furamizole) which has strong antibacterial activity, Raltegravir as an antiviral drug and Nesapidil drug is used in anti-arrhythmic therapy. This present review summarized some pharmacological activities and various kinds of synthetic routes for 2, 5-disubstituted 1,3,4-oxadiazole, and their derived products.
: Pyrimidine and its derivatives are a very important class of heterocyclic compounds that show interesting applications in the field of medicinal chemistry. Pyrimidine not only plays an important role as an organic reaction intermediate but also has a wide range of interesting biological activities viz. antibacterial, antifungal, anticancer, anti-inflammatory, antiviral, and antiprotozoal activity, etc. Numerous methods are available for the formation of pyrimidine derivatives have been reported in the literature. The advantage of pyrimidine as a starting material for different therapeutically potent derivatives has given momentum to this research. This review aims to report the new work on the synthesis of marketed drugs which consist of pyrimidine moiety.
Pyruvate kinase (PK) M2 activators ramp up glycolysis in cancer cells, leading to a reversal of the Warburg effect in cancer cells. A promising PKM2 activator molecule, IMID-2, developed by the National Institute of Pharmaceutical Education and Research-Ahmedabad showed promising anticancer activity against MCF-7 and COLO-205 cell lines, which represent breast and colon cancer. Its physicochemical properties, like solubility, ionization constant, partition coefficient and distribution constant, have already been established. Its metabolic pathway is also well established through in vitro and in vivo metabolite profiling and reported previously. In this study, we have evaluated the metabolic stability of IMID-2 using LC-MS/MS and investigated the safety aspect of the molecule through an acute oral toxicity study. In vivo studies in rats confirmed that the molecule is safe even at a dose level of 175 mg/kg. Furthermore, a pharmacokinetic study of IMID-2 was also carried out using LC-MS/MS to understand its absorption, distribution, metabolism, and excretion profile. The molecule was found to have promising bioavailability through the oral route. This research work is thus another step in the drug testing of this promising anticancer molecule. The molecule can be considered to be a potential anticancer lead based on the earlier report substantiated by current findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.