Extensive cancer research in the past few decades has identified the existence of a rare subpopulation of stem cells in the grove of cancer cells. These cells are known as the cancer stem cells marked by the presence of surface biomarkers, multi-drug resistance pumps and deregulated self-renewal pathways (SRPs). They have a crucial role in provoking cancer cells leading to tumorigenesis and its progressive metastasis. Cancer stem cells (CSCs) are much alike to normal stem cells in their self-renewal mechanisms. However, deregulations in the SRPs are seen in CSCs, making them resistant to conventional chemotherapeutic agents resulting in the tumor recurrence. Current treatment strategies in cancer fail to detect and differentiate the CSCs from their non-tumorigenic progenies owing to absence of specific biomarkers. Now, it has become imperative to understand complex functional biology of CSCs, especially the signaling pathways to design improved treatment strategies to target them. It is hopeful that the SRPs in CSCs offer a promising target to alter their survival strategies and impede their tumorigenic potential. However, there are many perils associated with the direct targeting method by conventional therapeutic agents such as off targets, poor bioavailability and poor cellular distribution. Recent evidences have shown an increased use of small molecule antagonists directly to target these SRPs may lead to severe side-effects. An alternative to solve these issues could be an appropriate nanoformulation. Nanoformulations of these molecules could provide an added advantage for the selective targeting of the pathways especially Hedgehog, Wnt, Notch and B-cell-specific moloney murine leukemia virus integration site 1 in the CSCs while sparing the normal stem cells. Hence, to achieve this goal a complete understanding of the molecular pathways corroborate with the use of holistic nanosystem (nanomaterial inhibition molecule) could possibly be an encouraging direction for future cancer therapy.
Current conventional mono and combination therapeutic strategies often fail to target breast cancer tissue effectively due to tumor heterogeneity comprising cancer stem cells (CSCs) and bulk tumor cells. This is further associated with drug toxicity and resistivity in the long run. A nanomedicine platform incorporating combination anti-cancer treatment might overcome these challenges and generate synergistic anti-cancer effects and also reduce drug toxicity. GANT61 and curcumin were co-delivered via polymeric nanoparticles (NPs) for the first time to elicit enhanced anti-tumor activity against heterogeneous breast cancer cell line MCF-7. We adopted the single-emulsion-solvent evaporation method for the preparation of the therapeutic NPs. The GANT61-curcumin PLGA NPs were characterized for their size, shape and chemical properties, and anti-cancer cell studies were undertaken for the plausible explanation of our hypothesis. The synthesized GANT61-curcumin PLGA NPs had a spherical, smooth surface morphology, and an average size of 347.4 d. nm. The NPs induced cytotoxic effects in breast cancer cells at a midminimal dosage followed by cell death via autophagy and apoptosis, reduction in their target protein expression along with compromising the self-renewal property of CSCs as revealed by their in vitro cell studies. The dual-drug NPs thus provide a novel perspective on aiding existing anti-cancer nanomedicine therapies to target a heterogeneous tumor mass effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.