Background Anopheles subpictus and Anopheles sundaicus are closely related species, each comprising several sibling species. Ambiguities exist in the classification of these two nominal species and the specific status of members of these species complexes. Identifying fixed molecular forms and mapping their spatial distribution will help in resolving the taxonomic ambiguities and understanding their relative epidemiological significance. Methods DNA sequencing of Internal Transcribed Spacer-2 (ITS2), 28S-rDNA (D1-to-D3 domains) and cytochrome oxidase-II (COII) of morphologically identified specimens of two nominal species, An. subpictus sensu lato (s.l.) and An. sundaicus s.l., collected from the Indian subcontinent, was performed and subjected to genetic distance and molecular phylogenetic analyses. Results Molecular characterization of mosquitoes for rDNA revealed the presence of two molecular forms of An. sundaicus s.l. and three molecular forms of An. subpictus s.l. (provisionally designated as Form A, B and C) in the Indian subcontinent. Phylogenetic analyses revealed two distinct clades: (i) subpictus clade, with a single molecular form of An. subpictus (Form A) prevalent in mainland India and Sri Lanka, and (ii) sundaicus clade, comprising of members of Sundaicus Complex, two molecular forms of An. subpictus s.l. (Form B and C), prevalent in coastal areas or islands in Indian subcontinent, and molecular forms of An. subpictus s.l. reported from Thailand and Indonesia. Based on the number of float-ridges on eggs, all An. subpictus molecular Form B were classified as Species B whereas majority (80%) of the molecular Form A were classified as sibling species C. Fixed intragenomic sequence variation in ITS2 with the presence of two haplotypes was found in molecular Form A throughout its distribution. Conclusion A total of three molecular forms of An. subpictus s.l. and two molecular forms of An. sundaicus s.l. were recorded in the Indian subcontinent. Phylogenetically, two forms of An. subpictus s.l. (Form B and C) prevalent in coastal areas or islands in the Indian subcontinent and molecular forms reported from Southeast Asia are members of Sundaicus Complex. Molecular Form A of An. subpictus is distantly related to all other forms and deserve a distinct specific status.
Background Anopheles stephensi, an invasive malaria vector, has been reported to have three biological forms identifiable mainly based on the number of ridges present on the egg’s floats. Recently, the first intron of the odorant-binding protein-1 (AsteObp1) has been introduced as a molecular marker for the identification of these forms, and based on this marker, the presence of three putative sibling species (designated as species A, B and C) has been proposed. However, there is no data on the association of proposed markers with biological form or putative species on field populations. Methods Field collected and laboratory-reared An. stephensi were characterized for biological forms based on the number of ridges on the egg’s float. DNA sequencing of the partial AsteObp1 gene of An. stephensi individuals were performed by Sanger’s method, either directly or after cloning with a plasmid vector. Additionally, AsteObp1 sequences of various laboratory lines of An. stephensi were retrieved from a public sequence database. Results AsteObp1 intron-1 in Indian An. stephensi populations are highly polymorphic with the presence of more than 13 haplotypes exhibiting nucleotides as well as length-polymorphism (90-to-121 bp). No specific haplotype or a group of closely related haplotypes of intron-1 was found associated with any biological form identified morphologically. High heterozygosity for this marker with a low inbreeding coefficient in field and laboratory populations indicates that this marker is not suitable for the delimitation of putative sibling species, at least in Indian populations. Conclusions AsteObp1 cannot serve as a marker for identifying biological forms of An. stephensi or putative sibling species in Indian populations.
Background: Gujarat State has been witnessing large scale urbanization, in last two decades, resulting changes in local environment and microclimate may have also influenced the resting, feeding habits and development of Anopheles culicifacies sensu 1ato. Therefore, a systematic longitudinal study was undertaken to know the bionomics of An. culicifacies s.l. in present study. Methods: The study was conducted in four sentinel villages in Kheda and Panchmahal Districts. The mosquitoes resting indoors and outdoors were collected in early morning hours, using mouth aspirator, pyrethrum space spray and light traps. Mosquito landing collections on human volunteers was carried out from dusk to dawn. Species composition, abundance, seasonal prevalence, resting behavior (Endophily and Exophily), sibling species composition, vector potential and insecticide susceptibility status of malaria vectors was studied. Results: Six Anopheles species were collected, An. subpictus s.l. was the predominant species followed by An. culicifacies s.l., a known malaria vector was resting indoor and zoophagic behaviour. Anopheles culicifacies, sibling species B (89%) was found. The sporozoite rate (%) and entomological inoculation rate in Kheda was 2.33%, 3.09 per bite/ person/annum and they were 1.05% and 0.475 bite/person/annum in Panchmahal, respectively. Anopheles culicifacies s.l. was found possible resistance to alpha-cypermethrin. Conclusion: Anopheles culicifacies s.l. showed endophillic, zoophagic behaviour and found possible resistance to alpha-cypermethrin. Early biting behaviour of An. culicifacies s.l. in this area is a cause of concern. Therefore, there is need for frequent monitoring and evaluation of vector control measures in order to achieve the elimination target of malaria in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.