Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT.
Graphene oxide-silver nanocomposite (GO-Ag) was fabricated via the sonochemical method, which shows unique physiochemical properties. Graphene oxide (GO) and silver nanoparticles (AgNPs) were synthesized by modified Hummer's and Chemical reduction methods, respectively. The synthesized nanocomposite was characterized using powder X-ray diffraction, Raman spectroscopy, and Fourier-transform infrared spectroscopy. The surface morphology of synthesized nanoparticles was studied using scanning electron microscopy and transmission electron microscopy. The thermoluminescence property of the nanocomposite was analyzed by irradiating the samples in gamma radiation at 1 kGy. Electrochemical reversibility of the GO-Ag nanocomposite was examined by cyclic voltammetry. The photocatalytic application of the nanocomposite was studied using degradation of methylene blue dye. Results reveal that doping of AgNPs on the GO surface not only improves its dye degradation property but also enhances its thermoluminescence property. This knowledge will be helpful in determining the antibacterial property of the GO-Ag nanocomposite in the future.
Cerium doped strontium sulfide nanostructures were synthesized by the solid state diffusion method in the presence of sodium thiosulfate. XRD confirmed the single phase rocksalt structure of the synthesized samples and the average grain size using the Debye–Scherrer relation is calculated to be 55 nm. TEM micrographs reveal the agglomerated whisker-like morphology with a diametre of 55–60 nm and length of several nanometres, which is in close agreement with XRD results. The effect of dopant concentration on photoluminescence (PL) intensity has been studied. PL emission for SrS : Ce (0.5 mol%) is at 481 nm with a shoulder at 530 nm at an excitation wavelength of 430 nm, which is attributed to the transitions from the 5d state to the 4f (2f7/2, 2f5/2) states of Ce3+. Ultraviolet and visible (UV–VIS) spectroscopy shows band-to-band absorption at 273 nm (4.54 eV), which is blue shifted in comparison to the band gap of bulk SrS (4.2 eV), which may be due to quantum confinement. The effect of high energy ball milling on the grain size and PL intensity has also been investigated for the first time in the doped SrS system. The PL emission wavelength is blue shifted by 3 nm but the emission intensity decreases unexpectedly as the milling time increases, although there is a reduction in size which is evident from XRD peak broadening of the milled samples. This may be ascribed to surface defects generated by ball milling which act as killing centres, quenching the PL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.