Recent studies have shown that circulating microRNAs are potential biomarkers for various types of malignancies. The aim of this study was to investigate the feasibility of using serum exosomal microRNAs (miRNAs) as novel serological biomarkers for hepatocellular carcinoma (HCC) diagnosis and prognosis. Exosomes are small membranous vesicles (30–100 nm). Exosomal miR-665 levels in HCC patients were significantly higher than those in healthy subjects (P < 0.05), and exosomal miR-665 levels were significantly upregulated in tumours larger in size (> 5 cm), in tumours with local invasion and in those at an advanced clinical stage (stage III/IV) of HCC (P = 0.0042, 0.0197, and 0.0276, respectively). The survival time of the exosomal miR-665 high-expression group (n = 17) was significantly shorter than that of the low-expression group (n = 13) (P = 0.036). In addition, we found that HCC cell-derived exosomes promoted hepatoma cell proliferation and upregulated the expression level of proteins in the MAPK/ERK pathway in vitro and in vivo. This study suggests that serum exosomal miR-665 may be a novel minimally invasive biomarker for HCC diagnosis and prognosis.
IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a scaffold protein that participates in several cellular functions, including cytoskeletal regulation, cell adhesion, gene transcription and cell polarization. IQGAP1 has been implicated in the tumorigenesis and progression of several human cancers. However, the role of IQGAP1 in pancreatic ductal adenocarcinoma (PDAC) is still unknown. We found that IQGAP1 expression was an independent prognostic factor for PDAC. IQGAP1 upregulation significantly promoted cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), whereas IQGAP1 downregulation impaired its oncogenic functions. Overexpression of IQGAP1 increased the protein level of Dishevelled2 (DVL2) and enhanced canonical Wnt signaling as evidenced by increased DVL2 level, β-catenin transcriptional activity, β-catenin nuclear translocation and expression of the direct target genes of β-catenin (cyclin D1 and c-myc). In contrast, knockdown of IQGAP1 decreased the level of DVL2 and attenuated Wnt/β-catenin signaling. In vivo results revealed that IQGAP1 promoted tumor growth and metastasis. Co-immunoprecipitation studies demonstrated that IQGAP1 interacted with both DVL2 and β-catenin. Moreover, knockdown of DVL2 reversed IQGAP1-induced EMT. Our findings thus confirmed that IQGAP1 could be used as a potential target for PDAC treatment.
The liver has great regenerative capacity after functional mass loss caused by injury or disease. Many studies have shown that primary hepatocyte-derived exosomes, which can deliver biological information between cells, promote the regenerative process of the liver. However, the yield of exosomes is very limited. Recent studies have demonstrated that exosome-mimetic nanovesicles (NVs) can be prepared from cells with almost 100 times the production yield compared with exosomes. Thus, this study investigated the therapeutic capacity of exosome-mimetic NVs from primary hepatocytes in liver regeneration. Exosome-mimetic NVs were prepared by serial extrusions of cells through polycarbonate membranes, and the yield of these NVs was more than 100 times that of exosomes. The data indicated that the NVs could promote hepatocyte proliferation and liver regeneration by significantly enhancing the content of sphingosine kinase 2 in recipient cells. To the best of our knowledge, this is the first time that exosome-mimetic NVs from primary hepatocytes have been prepared, and these NVs have components similar to exosomes from primary hepatocytes and, in some respects, biofunctions similar to exosomes. Strategies inspired by this study may lead to substitution of exosomes with exosome-mimetic NVs for biofunctional purposes, including utilization in tissue repair and regeneration.
Aim. QC4 is the derivative of rosin's main components dehydroabietic acid (DHA). We investigated the cytotoxic effect of QC4 on gastric cancer cells and revealed the mechanisms beneath the induction of cell death. Methods. The cytotoxic effect of QC4 on gastric cancer cells was evaluated by CCK-8 assay and flow cytometry. The underlying mechanisms were tested by administration of cell death related inhibitors and detection of apoptotic and oncosis related proteins. Cytomembrane integrity and organelles damage were confirmed by lactate dehydrogenase (LDH) leakage assay, mitochondrial function test, and cytosolic free Ca2+ concentration detection. Results. QC4 inhibited cell proliferation dose- and time-dependently and destroyed cell membrane integrity, activated calpain-1 autolysis, and induced apoptotic protein cleavage in gastric cancer cells. The detection of decreased ATP and mitochondrial membrane potential, ROS accumulation, and cytosolic free Ca2+ elevation confirmed organelles damage in QC4-treated gastric cancer cells. Conclusions. DHA derivative QC4 induced the damage of cytomembrane and organelles which finally lead to oncosis and apoptosis in gastric cancer cells. Therefore, as a derivative of plant derived small molecule DHA, QC4 might become a promising agent in gastric cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.