SignificanceEmissions of nitrogen oxides (NOx) have a large impact on air quality and climate change as precursors in the formation of ozone and secondary aerosols. We find that NOx emissions have not been decreasing as expected in recent years (2011–2015) when comparing top-down estimates from satellites and surface NO2 measurements to the trends predicted from the US Environmental Protection Agency’s emission inventory data. The discrepancy can be explained by the growing relative contribution of industrial, area, and off-road mobile sources of emissions, decreasing relative contribution of on-road gasoline vehicles, and slower than expected decreases in on-road diesel NOx emissions, with implications for air-quality management.
Abstract. We conduct a global inverse analysis of 2010–2018 GOSAT observations to better understand the factors controlling atmospheric methane and its accelerating increase over the 2010–2018 period. The inversion optimizes anthropogenic methane emissions and their 2010–2018 trends on a 4∘×5∘ grid, monthly regional wetland emissions, and annual hemispheric concentrations of tropospheric OH (the main sink of methane). We use an analytical solution to the Bayesian optimization problem that provides closed-form estimates of error covariances and information content for the solution. We verify our inversion results with independent methane observations from the TCCON and NOAA networks. Our inversion successfully reproduces the interannual variability of the methane growth rate inferred from NOAA background sites. We find that prior estimates of fuel-related emissions reported by individual countries to the United Nations are too high for China (coal) and Russia (oil and gas) and too low for Venezuela (oil and gas) and the US (oil and gas). We show large 2010–2018 increases in anthropogenic methane emissions over South Asia, tropical Africa, and Brazil, coincident with rapidly growing livestock populations in these regions. We do not find a significant trend in anthropogenic emissions over regions with high rates of production or use of fossil methane, including the US, Russia, and Europe. Our results indicate that the peak methane growth rates in 2014–2015 are driven by low OH concentrations (2014) and high fire emissions (2015), while strong emissions from tropical (Amazon and tropical Africa) and boreal (Eurasia) wetlands combined with increasing anthropogenic emissions drive high growth rates in 2016–2018. Our best estimate is that OH did not contribute significantly to the 2010–2018 methane trend other than the 2014 spike, though error correlation with global anthropogenic emissions limits confidence in this result.
Abstract. We evaluate the global atmospheric methane column retrievals from the new TROPOMI satellite instrument and apply them to a global inversion of methane sources for 2019 at 2∘ × 2.5∘ horizontal resolution. We compare the results to an inversion using the sparser but more mature GOSAT satellite retrievals and to a joint inversion using both TROPOMI and GOSAT. Validation of TROPOMI and GOSAT with TCCON ground-based measurements of methane columns, after correcting for retrieval differences in prior vertical profiles and averaging kernels using the GEOS-Chem chemical transport model, shows global biases of −2.7 ppbv for TROPOMI and −1.0 ppbv for GOSAT and regional biases of 6.7 ppbv for TROPOMI and 2.9 ppbv for GOSAT. Intercomparison of TROPOMI and GOSAT shows larger regional discrepancies exceeding 20 ppbv, mostly over regions with low surface albedo in the shortwave infrared where the TROPOMI retrieval may be biased. Our inversion uses an analytical solution to the Bayesian inference of methane sources, thus providing an explicit characterization of error statistics and information content together with the solution. TROPOMI has ∼ 100 times more observations than GOSAT, but error correlation on the 2∘ × 2.5∘ scale of the inversion and large spatial inhomogeneity in the number of observations make it less useful than GOSAT for quantifying emissions at that scale. Finer-scale regional inversions would take better advantage of the TROPOMI data density. The TROPOMI and GOSAT inversions show consistent downward adjustments of global oil–gas emissions relative to a prior estimate based on national inventory reports to the United Nations Framework Convention on Climate Change but consistent increases in the south-central US and in Venezuela. Global emissions from livestock (the largest anthropogenic source) are adjusted upward by TROPOMI and GOSAT relative to the EDGAR v4.3.2 prior estimate. We find large artifacts in the TROPOMI inversion over southeast China, where seasonal rice emissions are particularly high but in phase with extensive cloudiness and where coal emissions may be misallocated. Future advances in the TROPOMI retrieval together with finer-scale inversions and improved accounting of error correlations should enable improved exploitation of TROPOMI observations to quantify and attribute methane emissions on the global scale.
Abstract. We use satellite (GOSAT) and in situ (GLOBALVIEWplus CH4 ObsPack) observations of atmospheric methane in a joint global inversion of methane sources, sinks, and trends for the 2010–2017 period. The inversion is done by analytical solution to the Bayesian optimization problem, yielding closed-form estimates of information content to assess the consistency and complementarity (or redundancy) of the satellite and in situ data sets. We find that GOSAT and in situ observations are to a large extent complementary, with GOSAT providing a stronger overall constraint on the global methane distributions, but in situ observations being more important for northern midlatitudes and for relaxing global error correlations between methane emissions and the main methane sink (oxidation by OH radicals). The in-situ-only and the GOSAT-only inversions alone achieve 113 and 212 respective independent pieces of information (DOFS) for quantifying mean 2010–2017 anthropogenic emissions on 1009 global model grid elements, and respective DOFS of 67 and 122 for 2010–2017 emission trends. The joint GOSAT+ in situ inversion achieves DOFS of 262 and 161 for mean emissions and trends, respectively. Thus, the in situ data increase the global information content from the GOSAT-only inversion by 20 %–30 %. The in-situ-only and GOSAT-only inversions show consistent corrections to regional methane emissions but are less consistent in optimizing the global methane budget. The joint inversion finds that oil and gas emissions in the US and Canada are underestimated relative to the values reported by these countries to the United Nations Framework Convention on Climate Change (UNFCCC) and used here as prior estimates, whereas coal emissions in China are overestimated. Wetland emissions in North America are much lower than in the mean WetCHARTs inventory used as a prior estimate. Oil and gas emissions in the US increase over the 2010–2017 period but decrease in Canada and Europe. The joint inversion yields a global methane emission of 551 Tg a−1 averaged over 2010–2017 and a methane lifetime of 11.2 years against oxidation by tropospheric OH (86 % of the methane sink).
BackgroundExosomes are carriers of intercellular information and regulate the tumor microenvironment. They play an important role in drug resistance by transporting RNA molecules and proteins. However, their effects on sorafenib resistance in hepatocellular carcinoma (HCC) are not completely understood.MethodsExosomes were isolated from two invasive hepatoma cell lines (MHCC-97 L and MHCC-97H), and their roles in regulating sorafenib resistance in liver cancer cells as well as the underlying molecular mechanisms were determined. The exosomes were analyzed by TEM (transmission electron microscopy), DLS (dynamic light scattering) and Western blotting. Cell viability, cell death and the effects of exosomes on the HGF/c-Met/Akt signaling pathway in cancer cells were analyzed by MTT assays, FACS analysis and Western blotting, respectively. Moreover, the effects of exosomes on sorafenib resistance in vivo were investigated using a subcutaneous transplantation tumor model in athymic nude mice.ResultsExosomes derived from HCC cells were of the expected size and expressed the exosomal markers CD9 and CD63. They induced sorafenib resistance in vitro by activating the HGF/c-Met/Akt signaling pathway and inhibiting sorafenib-induced apoptosis. They also induced sorafenib resistance in vivo by inhibiting sorafenib-induced apoptosis. Moreover, exosomes derived from highly invasive tumor cells had greater efficacy than that of exosomes derived from less invasive cells.ConclusionsThese data reveal the important role of HCC cell-derived exosomes in the drug resistance of liver cancer cells and demonstrate the intrinsic interaction between exosomes and their targeted tumor cells. This study suggests a new strategy for improving the effectiveness of sorafenib in treating HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.