Regulatory T cells (Tregs) appear to be involved in sepsis-induced immune dysfunction; neuropilin-1 (Nrp-1) was identified as a surface marker for CD4+CD25+Tregs. In the current study, we investigated the negative immunoregulation of Nrp-1highCD4+CD25+Tregs and the potential therapeutic value of Nrp-1 in sepsis. Splenic CD4+CD25+Tregs from cecal ligation and puncture (CLP) mouse models were further segregated into Nrp-1highTregs and Nrp-1lowTregs; they were cocultured with CD4+CD25− T cells. The expression of forkhead/winged helix transcription factor-3 (Foxp-3), cytotoxic T-lymphocyte associated antigen-4 (CTLA-4), membrane associated transforming growth factor-β (TGF-βm+), apoptotic rate, and secretive ability [including TGF-β and interleukin-10 (IL-10)] for various types of Tregs, as well as the immunosuppressive ability of Tregs on CD4+CD25− T cells, were determined. Meanwhile, the impact of recombinant Nrp-1 polyclonal antibody on the demethylation of Foxp-3-TSDR (Treg-specific demethylated region) was measured in in vitro study. Sepsis per se markedly promoted the expression of Nrp-1 of CD4+CD25+Tregs. Foxp-3/CTLA-4/TGF-βm+ of Nrp-1highTregs were upregulated by septic challenge. Nrp-1highTregs showed strong resilience to apoptosis and secretive ability and the strongest immunosuppressive ability on CD4+CD25− T cells. In the presence of lipopolysaccharide (LPS), the recombinant Nrp-1 polyclonal antibody reduced the demethylation of Foxp-3-TSDR. Nrp-1highTregs might reveal primary negative immunoregulation in sepsis; Nrp-1 could represent a new potential therapeutic target for the study of immune regulation in sepsis.
Background:This work aimed to screen key biomarkers related to sepsis progression by bioinformatics analyses. Material/Methods:The microarray datasets of blood and neutrophils from patients with sepsis or septic shock were downloaded from Gene Expression Omnibus database. Then, differentially expressed genes (DEGs) from 4 groups (sepsis versus normal blood samples; septic shock versus normal blood samples; sepsis neutrophils versus normal controls and septic shock neutrophils versus controls) were respectively identified followed by functional analyses. Subsequently, protein-protein network was constructed, and key functional sub-modules were extracted. Finally, receiver operating characteristic analysis was conducted to evaluate diagnostic values of key genes. Results:There were 2082 DEGs between blood samples of sepsis patients and controls, 2079 DEGs between blood samples of septic shock patients and healthy individuals, 6590 DEGs between neutrophils from sepsis and controls, and 1056 DEGs between neutrophils from septic shock patients and normal controls. Functional analysis showed that numerous DEGs were significantly enriched in ribosome-related pathway, cell cycle, and neutrophil activation involved in immune response. In addition, TRIM25 and MYC acted as hub genes in protein-protein interaction (PPI) analyses of DEGs from microarray datasets of blood samples. Moreover, MYC (AUC=0.912) and TRIM25 (AUC=0.843) had great diagnostic values for discriminating septic shock blood samples and normal controls. RNF4 was a hub gene from PPI analyses based on datasets from neutrophils and RNF4 (AUC=0.909) was capable of distinguishing neutrophil samples from septic shock samples and controls. Conclusions:Our findings identified several key genes and pathways related to sepsis development.
Background Sepsis, a life-threatening organ dysfunction induced by infection, is a major public health problem. This study aimed to evaluate the frequency and mortality of sepsis, severe sepsis, and septic shock in China. Methods We Searched MEDLINE, Embase, PubMed, and Cochrane Library from 1 January 1992 to 1 June 2020 for studies that reported on the frequency and mortality of sepsis, severe sepsis, and septic shock conducted in China. Random effects models were performed to estimate the pooled frequency and mortality of sepsis, severe sepsis, and septic shock. Results Our search yielded 846 results, of which 29 studies were included in this review. The pooled frequency of sepsis was estimated at 33.6% (95% CI 25.9% to 41.3%, I2 = 99.2%; p < 0.001), and the pooled mortality of sepsis, severe sepsis and septic shock were 29.0% (95% CI 25.3%–32.8%, I2 = 92.1%; p = 0), 31.1% (95% CI 25.3% to 36.9%, I2 = 85.8%; p < 0.001) and 37.3% (95% CI 28.6%–46.0%, I2 = 93.5%; p < 0.001). There was significant heterogeneity between studies. With a small number of included studies and the changing definition of sepsis, trends in sepsis frequency and mortality were not sufficient for analysis. Epidemiological data on sepsis in the emergency department (ED) are severely lacking, and more research is urgently needed in this area is urgently needed. Conclusions Our findings indicated that the frequency and mortality of sepsis and septic shock in China were much higher than North America and Europe countries. Based on our results, an extremely high incidence and mortality of sepsis and septic shock in China's mainland requires more healthcare budget support. Epidemiological data on sepsis and septic shock in ED are severely lacking, and more research is urgently needed in this area. Trial registration This systematic review was conducted according to the statement of the preferred reporting items for systematic review (PROSPERO CRD42021243325) and the meta-analysis protocols (PRISMA-P).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.