A
BSTRACT
Introduction:
This study investigated the role of diallyl disulfide (DADS) against glycerol-induced nephrotoxicity in rats. Moreover, the role of peroxisome proliferator activated receptor-γ (PPAR-γ) in DADS-mediated renoprotection has been explored.
Materials and Methods:
Male Wistar albino rats were challenged with glycerol (50% w/v, 8 mL/kg intramuscular) to induce nephrotoxicity. Kidney injury was quantified by measuring serum creatinine, creatinine clearance, urea, potassium, fractional excretion of sodium, and microproteinuria in rats. Renal oxidative stress was measured in terms of thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels. Hematoxylin–eosin (H&E) and periodic acid Schiff staining of renal samples was done to show histological changes. Glycerol-induced muscle damage was quantified by assaying creatine kinase (CK) levels in rat serum.
Results:
Administration of glycerol resulted in muscle damage as reflected by significant rise in CK levels in rats. Glycerol intoxication led kidney damage was reflected by significant change in renal biochemical parameters, renal oxidative stress and histological changes in rat kidneys. Administration of DADS attenuated glycerol-induced renal damage. Notably, pretreatment with bisphenol A diglycidyl ether, a PPAR-γ antagonist, abolished DADS renoprotection in rats.
Conclusion:
We conclude that DADS affords protection against glycerol-induced renal damage in rats. Moreover, PPAR-γ plays a key role in DADS-mediated renoprotective effect.
Background:
Nowadays, biomedical research has been focusing on the design and development of new drug delivery systems that provide efficient drug targeting. The molecularly imprinted polymers (MIPs) have attracted wide interest and play an indispensable role as a drug carrier. Drug delivery systems based on MIPs have been frequently cited in the literature. They are cross-linked polymers that contain binding sites according to the complementary structure of the template molecules. They possess distinctive features of structure predictability and site recognition specificity. Versatile applications of MIPs include purification, biosensing, bioseparation, artificial antibodies, and drug delivery. An ideal MIPs should include features such as biocompatibility, biodegradability, and stability.
Objective:
In this article, we elaborate the historic growth, synthesis, and preparation of different MIPs and present an updated summary of recent advances in the development of new drug delivery system which are based on this technique. Their potential to deliver drugs in a controlled and targeted manner will also be discussed.
Conclusion:
MIPs possess unique advantages, such as lower toxicity, and fewer side effects, and good therapeutic potential. They offer administration of drugs by different routes, i.e., oral, ocular or transdermal. Despite several advantages, biomedical companies are hesitant to invest in MIPs based drug delivery system due to the limited availability of chemical compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.