A simple and robust method is presented to immobilize a heparin‐analog polyelectrolyte on inert hydrophobic surfaces. It is demonstrated that an amphiphilic block copolymer consisting of linear polyglycerol sulfate (lPGS) and a benzophenone modified anchor block can be bound to polystyrene surfaces in a facile dip‐coating procedure. The chaotropic salt guanidinium chloride is used to overcome the aggregation of the polymer as well as the repulsion between highly hydrated sulfate groups and the polystyrene surface. Irradiation with UV light tethers the polymer chains covalently to the surface. The resulting coating exhibits an aggregate morphology that resembles the aggregation behavior in solution, with a coating thickness of 8 nm. The behavior of the surfaces is dominated by the polyelectrolyte brush coating. They swell and collapse in response to different ionic strengths of the surrounding medium, and bind proteins via electrostatic interactions. The coating is stable toward physiological conditions over the course of several weeks. Coated surfaces bind to proteins of the complement cascade when in contact with dilute blood serum, which results in a decrease of complement activity to 78 ± 4%. The coating procedure can also be applied to other nonactivated polymer surfaces, as demonstrated on a polypropylene fleece.
The concept of multivalency finds various applications in the fields of chemistry and biology, relying on the principle that multiple weak interactions can lead to strong adhesive forces. Polymeric carriers...
The sensitivity of therapeutic proteins is a challenge for their use in biomedical applications, as they are prone to degradation and opsonization, thus limiting their potential. This demands for the development of drug delivery systems shielding proteins and releasing them at the site of action. Here, we describe the synthesis of novel polyglycerol-based redox-responsive nanogels and report on their potential as nanocarrier systems for the delivery of cytochrome C (CC). This system is based on an encapsulation protocol of the therapeutic protein into the polymer network. NGs were formed via inverse nanoprecipitation using inverse electron-demand Diels–Alder cyclizations (iEDDA) between methyl tetrazines and norbornenes. Coprecipitation of CC led to high encapsulation efficiencies. Applying physiological reductive conditions of l-glutathione (GSH) led to degradation of the nanogel network, releasing 80% of the loaded CC within 48 h while maintaining protein functionality. Cytotoxicity measurements revealed high potency of CC-loaded NGs for various cancer cell lines with low IC50 values (up to 30 μg·mL−1), whereas free polymer was well tolerated up to a concentration of 1.50 mg·mL−1. Confocal laser scanning microscopy (CLSM) was used to monitor internalization of free and CC-loaded NGs and demonstrate the protein cargo’s release into the cytosol.
The Cover Feature shows how the high‐yield synthesis of diverse aryl‐AuI complexes is achieved under mild conditions in green solvents (ethanol or water) by harnessing the unique properties of aryl‐B(triol)K boronates. The method permits transmetalation from aryl‐B(triol)K boronates while preserving aryl‐B(pin) boronates on the substrate. More information can be found in the Full Paper by F. J. L. Ingner et al. on page 2032 in Issue 8, 2020 (DOI: 10.1002/cssc.201903415).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.