22Ancient marine radiaxial calcite cements are commonly exploited as archives of marine porewater properties 23 based on the argument that they lack metabolic effects often assigned to biogenic carbonates. Here we 24 critically test the significance of conventional versus (with respect to these fabrics) less-conventional proxy 25 data from Pennsylvanian, Triassic, and Cretaceous case examples. Conventional proxies include: 26 cathodoluminescence, carbon and oxygen isotope ratios, main and trace elemental concentrations. Less 27 conventionally applied proxies are: clumped isotope "47", redox-sensitive, and rare earth elements sampled 28 across a succession of Triassic radiaxial fibrous calcites. Radiaxial calcites are subdivided in three groups 29 based on their luminescence characteristics: non-luminescent, patchy luminescent, and bright luminescent.
Throughout much of Earth's history, marine carbonates have represented one of the most important geological archives of environmental change. Several pivotal events during the Phanerozoic, such as mass extinctions or hyperthermal events have recently been associated with ocean acidification. Nevertheless, well-defined geological proxies for past ocean acidification events are, at best, scarce. Here, experimental work explores the response of bivalve shell ultrastructure and isotope geochemistry (d 13 C, d 18 O and d 26 Mg) to stressful environments, in particular to sea water acidification. In this study, the common blue mussel, Mytilus edulis, was cultured (from early juvenile stages to one year of age) at four pH regimes (pH NBS 7Á2 to pH 8Á0). Shell growth rate and ultrastructure of mainly the calcitic portion of the shells were compared between experimental treatments. Specimens exposed to low-pH environments show patches of disordered calcitic fibre orientation in otherwise well-structured shells. Furthermore, the electron backscattered diffraction analyses reveal that, under acidified conditions, the c-axis of the calcite prisms exhibits a bimodal or multi-modal distribution pattern. Similar shell disorder patterns have been reported from mytilids kept under naturally acidified sea water conditions. In contrast, this study found no evidence that different pH regimes affect shell carbon, oxygen or magnesium isotope ratios. Based on these observations, it is proposed that: (i) stressful environments, in this case low sea water pH, predictably affect bivalve biomineralization patterns; and (ii) these findings bear potential as a novel (petrographic) proxy for ancient sea water acidification. An assessment of the applicability of these data to well-preserved fossil shell material from selected time intervals requires additional work.
The earliest diagenetic post‐mortem exposure of biogenic carbonates at the sea floor and in the uppermost sediment column results in the colonization of hard‐part surfaces by bacterial communities. Some of the metabolic redox processes related to these communities have the potential to alter carbonate shell properties, and hence affect earliest diagenetic pathways with significant consequences for archive data. During a three‐month in vitro study, shell subsamples of the ocean quahog Arctica islandica (Linnaeus, 1767) were incubated in natural anoxic sediment slurries and bacterial culture medium of the heterotrophic Shewanella sediminisHAW‐EB3. Bulk analyses of the liquid media from the Shewanella sediminis incubation revealed an over ten‐fold increase in total alkalinity, dissolved inorganic carbon and ΩAragonite, and the alteration of the Mg/Ca, Mg/Sr and Sr/Ca ratios relative to control incubations without cultures. Ion ratios were most affected in the incubation with anoxic sediment, depicting a 25% decrease in Mg/Ca relative to the control. Shell sample surfaces that were exposed to both incubations displayed visible surface dissolution features, and an 8 wt% loss in calcium content. No such alteration features were detected in control shells. Apparently, alteration of shell carbonate properties was induced by microbially driven decomposition of shell intercrystalline organic constituents and subsequent opening of pathways for pore fluid–crystal exchange. This study illustrates the potential influence of benthic bacterial metabolism on biogenic carbonate archives during the initial stages of diagenetic alteration within a relatively short experimental duration of only three months. These results suggest that foremost the biological effect of bacterial cation adsorption on divalent cation ratios has the potential to complicate proxy interpretation. Results shown here highlight the necessity to consider bacterial metabolic activities in marine sediments for the interpretation of palaeo‐environmental proxies from shell carbonate archives.
<p><strong>Abstract.</strong> Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. Generating their mineralized hard parts most marine invertebrates thus produce metastable aragonite rather than the stable polymorph of CaCO<sub>3</sub>, calcite. After death of the organism, the physiological conditions which were present during biomineralisation are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features. <br><br> In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100&#8201;&#176;C and 175&#8201;&#176;C with reaction durations between one and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100&#8201;&#176;C (and at 0.1&#8201;MPa pressure) for 28 days and for samples altered at 175&#8201;&#176;C (and at 0.9&#8201;MPa pressure) for 7 and 84 days, respectively. During hydrothermal alteration at 100&#8201;&#176;C for 28 days, most but not all of the biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments below 175&#8201;&#176;C there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175&#8201;&#176;C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days. Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 micrometres, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to one mm after 7 days of alteration. Aragonite is metastable at all applied conditions. A small bulk thermodynamic driving force exists for the transition to calcite, which is augmented by stresses induced by organic matrix and interface energies related to the nanoparticulate architecture of the biogenic aragonite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50&#8201;&#176;C to ca. 170&#8201;&#176;C, or, additionally, to the presence of magnesium. Correspondingly, in Mg<sup>2+</sup>-bearing solutions the newly formed calcite crystals are larger than in Mg<sup>2+</sup>-free solutions. Overall, the aragonite-calcite transition occurs via an interface-coupled dissolution-reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175&#8201;&#176;C contributes to explain why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.