Oxygen radicals regulate many physiological processes, such as signaling, proliferation, and apoptosis, and thus play a pivotal role in pathophysiology and disease development. There are at least two thioredoxin reductase/ thioredoxin/peroxiredoxin systems participating in the cellular defense against oxygen radicals. At present, relatively little is known about the contribution of individual enzymes to the redox metabolism in different cell types. To begin to address this question, we generated and characterized mice lacking functional mitochondrial thioredoxin reductase (TrxR2). Ubiquitous Cre-mediated inactivation of TrxR2 is associated with embryonic death at embryonic day 13. TrxR2 ؊/؊ embryos are smaller and severely anemic and show increased apoptosis in the liver. The size of hematopoietic colonies cultured ex vivo is dramatically reduced. TrxR2-deficient embryonic fibroblasts are highly sensitive to endogenous oxygen radicals when glutathione synthesis is inhibited. Besides the defect in hematopoiesis, the ventricular heart wall of TrxR2 ؊/؊ embryos is thinned and proliferation of cardiomyocytes is decreased. Cardiac tissue-restricted ablation of TrxR2 results in fatal dilated cardiomyopathy, a condition reminiscent of that in Keshan disease and Friedreich's ataxia. We conclude that TrxR2 plays a pivotal role in both hematopoiesis and heart function.Reactive oxygen species (ROS)-generated mainly as a byproduct of the respiratory chain or by oxidases-are implicated in the pathogenesis and pathophysiology of a variety of human diseases such as cancer, cardiovascular, and degenerative disorders. A variety of cellular antioxidant systems control the balance of free intra-and extracellular oxygen radicals. Previous efforts have addressed the physiological role of superoxide dismutases, catalases, and glutathione (GSH) peroxidases in vivo, but the role of the thioredoxin/thioredoxin reductase/ peroxiredoxin system in ROS removal has only recently attracted attention.Thioredoxins are small redox-active proteins with an essential function in DNA metabolism and repair, transcription, and cell-cell communication (1). Acting through peroxiredoxins, they also efficiently protect cells from oxidative damage (27). Cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins are required for proliferation and protection from apoptosis during early embryogenesis (26). Moreover, in chicken B cells, Trx2 is critically involved in the regulation of mitochondriondependent apoptosis (37). More recently, heart-specific overexpression of dominant-negative Trx1 was shown to be associated with increased oxidative stress and cardiac hypertrophy in mice (39).Trx activities are governed by thioredoxin reductases (TrxRs) that, in turn, use NADPH/H ϩ as the reducing agent (23). TrxRs are members of the pyridine nucleotide-disulfide oxidoreductase family, form homodimers, and possess two interacting redox-active centers. The C-terminal redox center contains a catalytically important selenocysteine (SeCys) (9,17,41). In mammals, three TrxRs...
Mice deficient for the major lysosomal aspartic proteinase cathepsin D, generated by gene targeting, develop normally during the first 2 weeks, stop thriving in the third week and die in a state of anorexia at day 26 +/− 1. An atrophy of the ileal mucosa first observed in the third week progresses towards widespread intestinal necroses accompanied by thromboemboli. Thymus and spleen undergo massive destruction with fulminant loss of T and B cells. Lysosomal bulk proteolysis is maintained. These results suggest, that vital functions of cathepsin D are exerted by limited proteolysis of proteins regulating cell growth and/or tissue homeostasis, while its contribution to bulk proteolysis in lysosomes appears to be non‐critical.
Lysosomal cysteine proteinases of the papain family are involved in lysosomal bulk proteolysis, major histocompatibility complex class II mediated antigen presentation, prohormone processing, and extracellular matrix remodeling. Cathepsin L (CTSL) is a ubiquitously expressed major representative of the papain-like family of cysteine proteinases. To investigate CTSL in vivo functions, the gene was inactivated by gene targeting in embryonic stem cells. CTSL-deficient mice develop periodic hair loss and epidermal hyperplasia, acanthosis, and hyperkeratosis. The hair loss is due to alterations of hair follicle morphogenesis and cycling, dilatation of hair follicle canals, and disturbed club hair formation. Hyperproliferation of hair follicle epithelial cells and basal epidermal keratinocytes-both of ectodermal origin-are the primary characteristics underlying the mutant phenotype. Pathological inflammatory responses have been excluded as a putative cause of the skin and hair disorder. The phenotype of CTSL-deficient mice is reminiscent of the spontaneous mouse mutant furless (fs). Analyses of the ctsl gene of fs mice revealed a G149R mutation inactivating the proteinase activity. CTSL is the first lysosomal proteinase shown to be essential for epidermal homeostasis and regular hair follicle morphogenesis and cycling.
The term mesocrystal has been widely used to describe crystals that form by oriented assembly, and that exhibit nanoparticle substructures. Using calcite crystals co-precipitated with polymers as a suitable test case, this article looks critically at the concept of mesocrystals. Here we demonstrate that the data commonly used to assign mesocrystal structure may be frequently misinterpreted, and that these calcite/polymer crystals do not have nanoparticle substructures. Although morphologies suggest the presence of nanoparticles, these are only present on the crystal surface. High surface areas are only recorded for crystals freshly removed from solution and are again attributed to a thin shell of nanoparticles on a solid calcite core. Line broadening in powder X-ray diffraction spectra is due to lattice strain only, precluding the existence of a nanoparticle sub-structure. Finally, study of the formation mechanism provides no evidence for crystalline precursor particles. A re-evaluation of existing literature on some mesocrystals may therefore be required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.