Isoflavone supplementation for 12 weeks did not change LDLR and CD36 expression on leukocytes of PMW and did not affect body fat content and visceral adipose tissue (VAT), but slightly increased serum LDL-chol.
Background: Soy isoflavones belong to the group of phytoestrogens and are associated with beneficial health effects but are also discussed to have adverse effects. Isoflavones are intensively metabolized by the gut microbiota leading to metabolites with altered estrogenic potency. The population is classified into different isoflavone metabotypes based on individual metabolite profiles. So far, this classification was based on the capacity to metabolize daidzein and did not reflect genistein metabolism. We investigated the microbial metabolite profile of isoflavones considering daidzein and genistein. Methods: Isoflavones and metabolites were quantified in the urine of postmenopausal women receiving a soy isoflavone extract for 12 weeks. Based on these data, women were clustered in different isoflavone metabotypes. Further, the estrogenic potency of these metabotypes was estimated. Results: Based on the excreted urinary amounts of isoflavones and metabolites, the metabolite profiles could be calculated, resulting in 5 metabotypes applying a hierarchical cluster analysis. The metabotypes differed in part strongly regarding their metabolite profile and their estimated estrogenic potency.
Introduction Selenium is important for human health. However, the selenium status and selenium intake of the German population has not been recorded in a representative study so far. Material and Methods Thus, literature from the last 50 years was screened in a systematic way and the results of various studies were pulled together to shed light on the selenium status of the German population. Moreover, the selenium content of selected food items that were either found on the German market or grown in Germany was researched and evaluated. Results Of 3542 articles identified, 37 studies met the inclusion criteria. These 37 studies comprised a total of 8,010 healthy adults living in Germany with a weighted arithmetic mean of 82 μg/l selenium in plasma or serum. The results will form a basis for interpreting upcoming results from national food consumption surveys. Furthermore, 363 selenium values for 199 food items were identified out of 20 data sources—published or analysed between 2002 and 2019. An estimation of the selenium intake of the German population will be possible with this data in future nutrition surveys.
Introduction: Endurance exercise alters whole-body as well as skeletal muscle metabolism and physiology, leading to improvements in performance and health. However, biological mechanisms underlying the body’s adaptations to different endurance exercise protocols are not entirely understood.Methods: We applied a multi-platform metabolomics approach to identify urinary metabolites and associated metabolic pathways that distinguish the acute metabolic response to two endurance exercise interventions at distinct intensities. In our randomized crossover study, 16 healthy, young, and physically active men performed 30 min of continuous moderate exercise (CME) and continuous vigorous exercise (CVE). Urine was collected during three post-exercise sampling phases (U01/U02/U03: until 45/105/195 min post-exercise), providing detailed temporal information on the response of the urinary metabolome to CME and CVE. Also, fasting spot urine samples were collected pre-exercise (U00) and on the following day (U04). While untargeted two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) led to the detection of 608 spectral features, 44 metabolites were identified and quantified by targeted nuclear magnetic resonance (NMR) spectroscopy or liquid chromatography-mass spectrometry (LC-MS).Results: 104 urinary metabolites showed at least one significant difference for selected comparisons of sampling time points within or between exercise trials as well as a relevant median fold change >1.5 or <0.6¯ (NMR, LC-MS) or >2.0 or <0.5 (GC×GC-MS), being classified as either exercise-responsive or intensity-dependent. Our findings indicate that CVE induced more profound alterations in the urinary metabolome than CME, especially at U01, returning to baseline within 24 h after U00. Most differences between exercise trials are likely to reflect higher energy requirements during CVE, as demonstrated by greater shifts in metabolites related to glycolysis (e.g., lactate, pyruvate), tricarboxylic acid cycle (e.g., cis-aconitate, malate), purine nucleotide breakdown (e.g., hypoxanthine), and amino acid mobilization (e.g., alanine) or degradation (e.g., 4-hydroxyphenylacetate).Discussion: To conclude, this study provided first evidence of specific urinary metabolites as potential metabolic markers of endurance exercise intensity. Future studies are needed to validate our results and to examine whether acute metabolite changes in urine might also be partly reflective of mechanisms underlying the health- or performance-enhancing effects of endurance exercise, particularly if performed at high intensities.
Background On the national level, nutritional monitoring requires the assessment of reliable representative dietary intake data. To achieve this, standardized tools need to be developed, validated, and kept up-to-date with recent developments in food products and the nutritional behavior of the population. Recently, the human intestinal microbiome has been identified as an essential mediator between nutrition and host health. Despite growing interest in this connection, only a few associations between the microbiome, nutrition, and health have been clearly established. Available studies paint an inconsistent picture, partly due to a lack of standardization. Objective First, we aim to verify if food consumption, as well as energy and nutrient intake of the German population, can be recorded validly by means of the dietary recall software GloboDiet, which will be applied in the German National Nutrition Monitoring. Second, we aim to obtain high-quality data using standard methods on the microbiome, combined with dietary intake data and additional fecal sample material, and to also assess the functional activity of the microbiome by measuring microbial metabolites. Methods Healthy female and male participants aged between 18 and 79 years were recruited. Anthropometric measurements included body height and weight, BMI, and bioelectrical impedance analysis. For validation of the GloboDiet software, current food consumption was assessed with a 24-hour recall. Nitrogen and potassium concentrations were measured from 24-hour urine collections to enable comparison with the intake of protein and potassium estimated by the GloboDiet software. Physical activity was measured over at least 24 hours using a wearable accelerometer to validate the estimated energy intake. Stool samples were collected in duplicate for a single time point and used for DNA isolation and subsequent amplification and sequencing of the 16S rRNA gene to determine microbiome composition. For the identification of associations between nutrition and the microbiome, the habitual diet was determined using a food frequency questionnaire covering 30 days. Results In total, 117 participants met the inclusion criteria. The study population was equally distributed between the sexes and 3 age groups (18-39, 40-59, and 60-79 years). Stool samples accompanying habitual diet data (30-day food frequency questionnaire) are available for 106 participants. Current diet data and 24-hour urine samples for the validation of GloboDiet are available for 109 participants, of which 82 cases also include physical activity data. Conclusions We completed the recruitment and sample collection of the ErNst study with a high degree of standardization. Samples and data will be used to validate the GloboDiet software for the German National Nutrition Monitoring and to compare microbiome composition and nutritional patterns. Trial Registration German Register of Clinical Studies DRKS00015216; https://drks.de/search/de/trial/DRKS00015216 International Registered Report Identifier (IRRID) DERR1-10.2196/42529
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.