Background:Autologous matrix-induced chondrogenesis (AMIC) is a single-stage alternative to autologous chondrocyte implantation for treatment of localized cartilage defects of the knee. To our knowledge, no randomized controlled trial exists comparing the 2 methods.Purpose:To evaluate any difference in the outcome of AMIC as compared with collagen-covered autologous chondrocyte implantation (ACI-C).Study Design:Randomized controlled trial; Level of evidence, 2.Methods:A prospective randomized controlled clinical trial was designed to assess any differences in the outcomes between ACI-C and AMIC for the treatment of ≥1 chondral or osteochondral defects of the distal femur and/or patella. The inclusion period was set to 3 years, and the aim was to include 80 patients (40 in each group). Patient inclusion was broad, with few exclusion criteria. The primary outcome was change in Knee injury and Osteoarthritis Outcome Score (KOOS) at 2 years as compared with baseline. The secondary outcomes were the number of failures in each group at 2 years and the change in KOOS subscale, Lysholm, and pain visual analog scale (VAS) scores at 2 years as compared with baseline. A 2-sample t test with a significance level of P < .05 was used to compare the change in score from baseline between groups.Results:A total of 41 patients over 3 years were included in the study: 21 in the ACI-C group and 20 in the AMIC group. All the patients had prior surgery to the index knee. At 2-year follow-up, the clinical scores for both groups improved significantly from baseline. No significant differences between groups were seen in the change from baseline for KOOS (AMIC, 18.1; ACI-C, 10.3), any of the KOOS subscales, the Lysholm score (AMIC, 19.7; ACI-C, 17.0), or the VAS pain score (AMIC, 30.6; ACI-C, 19.6). Two patients in the AMIC group had progressed to a total knee replacement by the 2-year follow-up as compared with none in the ACI-C group.Conclusion:At 2-year follow-up, no significant differences were found regarding outcomes between ACI-C and AMIC. Mid- and long-term results will be important.Registration:NCT01458782 ( ClinicalTrials.gov identifier).
Many researchers world over are currently investigating the suitability of stromal cells harvested from foetal tissues for allogeneic cell transplantation therapies or for tissue engineering purposes. In this study, we have investigated the chondrogenic potential of mesenchymal stromal cells (MSCs) isolated from whole sections of human umbilical cord or mixed cord (UCSCs-MC), and compared them with cells isolated from synovial membrane (SMSCs), Hoffa's fat pad (HFPSCs) and cartilage. All MSCs were positive for surface markers including CD73, CD90, CD105, CD44, CD146 and CD166, but negative for CD11b, CD19, CD34, CD45 and HLA-DR in addition to CD106 and CD271. Chondrogenic potential of all cell sources was studied using 3D pellet cultures incubated in the presence of different combinations of anabolic substances such as dexamethasone, IGF-1, TGF-β1, TGF-β3, BMP-2 and BMP-7. BMP-2 and dexamethasone in combination with TGF-β1 or TGF-β3 excelled at inducing chondrogenesis on SMSCs, HFPSCs and chondrocytes, as measured by glycosaminoglycans and collagen type II staining of pellets, quantitative glycosaminoglycan expression, quantitative PCR of cartilage signature genes and electron microscopy. In contrast, none of the tested growth factor combinations was sufficient to induce chondrogenesis on UCSCs-MC. Moreover, incubation of UCSCs-MC spheroids in the presence of cartilage pieces or synovial cells in co-cultures did not aid chondrogenic induction. In summary, we show that in comparison with MSCs harvested from adult joint tissues, UCSCs-MC display poor chondrogenic abilities. This observation should alert researchers at the time of considering UCSCs-MC as cartilage forming cells in tissue engineering or repair strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.