Polysaccharide-based hydrogels are attractive materials for biomedical applications for reasons that include their polyfunctionality, generally benign nature, and biodegradability. However, the use of polysaccharide-based hydrogels may be limited by toxicity arising from small-molecule crosslinkers, or may involve undesired chemical modification [Hennink, W. E.; et al. Adv. Drug Delivery Rev. 2012, 64, 223−236]. Here, we report a green, simple, efficient strategy for the preparation of polysaccharide-based, in situ forming hydrogels. The Edgar group reports in the accompanying manuscript that chemoselective oxidation of oligo(hydroxypropyl)-substituted polysaccharides introduces ketone groups at the termini of the side chains [Nichols, B. L. B.; et al]. Amine-containing moieties can condense with ketones to form imines. The imine linkage is dynamic in the presence of water, providing the potential for self-healing [Wei, Z.; et al.
Although the removal of lignin and hemicelluloses from cellulose pulp to produce fully bleached cellulose nanofibrils (B-CNF) is the most common practice, the presence of residual lignin and hemicelluloses in raw materials for the production of lignin containing cellulose nanofibrils (LCNFs) holds several advantages. In this work, we investigated the effect of residual lignin in Eucalyptus globulus cellulose fibers on the properties of the resulting LCNFs. The stability of the colloidal suspensions was assessed by zeta-potential values and charge density analyses. Morphology of the CNFs was studied using scanning electron microscopy and atomic force microscopy. Fibril diameter and diameter distributions for CNFs with different levels of residual lignin showed a decrease on fiber diameter as the lignin content increases. Differences in the chemical composition of the CNFs was evidenced as indicated in the Fourier-transform infrared spectroscopy spectra, particularly in fingerprint region. Thermal behavior of the CNFs was not altered by the presence of lignin, as indicated by thermogravimetric analysis. Finally, the rheological behavior of the samples was evaluated observing a gel-like behavior as well as an increase of the viscosity in LCNFs with higher lignin contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.