The hematopoietic neutral serine proteases leukocyte elastase and cathepsin G are synthesized as inactive precursors, but become activated by removal of an amino-terminal dipeptide and are stored in granules. Moreover, the pro forms of elastase and cathepsin G show carboxyl-terminal prodomains of 20 and 11 amino acids, respectively, which are not present in the mature enzymes. To investigate mechanisms of processing, activation, and granular targeting, we have utilized transgenic expression of myeloid serine proteases in the rat basophilic/mast cell line RBL-1 (Gullberg, U., Lindmark, A., Nilsson, E., Persson, A.-M., and Olsson, I. (1994) J. Biol. Chem. 269, 25219-25225). Leukocyte elastase was stably expressed in RBL-1 cells, and the translation products were characterized by biosynthetic labeling followed by immunoprecipitation, SDS-polyacrylamide gel electrophoresis, and fluorography. Processing of a main pro form of 34 kDa into mature 31- and 29-kDa forms was demonstrated. Translocation of mature forms to granule-containing fractions was shown by subcellular fractionation experiments. The processed forms were enzymatically active, judging by the occurrence of amino-terminal processing demonstrated by radiosequence analysis, the acquisition of affinity for the protease inhibitor aprotinin, and the appearance of elastase activity in transfected RBL cells. To investigate the function of the carboxyl-terminal prodomains, deletion mutants of leukocyte elastase and cathepsin G lacking the carboxyl-terminal extension were constructed and transfected into RBL cells. Our results show that as full-length proteins, the deletion mutants were converted to active enzymes and transferred to granules with kinetics similar to that of wild-type enzymes. We conclude that human leukocyte elastase and cathepsin G are converted into enzymatically active forms when expressed in RBL cells and targeted for storage in granules; the carboxyl-terminal prodomains are necessary neither for enzymatic activation nor for targeting to granules in RBL cells.
The processing and intracellular transport of myeloperoxidase were studied in the human promyelocytic leukaemia cell line HL-60 and in normal marrow cells labelled with [35S]methionine or [14C]leucine. Myeloperoxidase was precipitated with antimyeloperoxidase serum; the immunoprecipitates were subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and radiolabelled myeloperoxidase visualized by fluorography. During a 1 h pulse, myeloperoxidase was labelled in a chain of apparent Mr 90 000. With a subsequent chase, the Mr 90 000 polypeptide disappeared and was replaced by chains of Mr 62 000 and 12 400 corresponding roughly to the size of neutrophil myeloperoxidase subunits. The identification of the radioactive polypeptides as different forms of myeloperoxidase was established also by the similarity in patterns generated by partial proteolysis with V8 proteinase from Staphylococcus aureus. Processing of myeloperoxidase in HL-60 was slow; mature polypeptides were significantly increased only after 6 h. Another myeloperoxidase chain of apparent Mr 82 000 was an intermediate precursor or degradation form. Pulse-chase experiments in combination with sucrose-density-gradient separations of homogenates showed that the Mr 90 000 precursor was located in light density organelles only and not in granule fractions, whereas the Mr 82 000 precursor was located only in intermediate density organelles, suggesting that the latter is a product of the former. Processed mature myeloperoxidase was concentrated in the granule fraction, but some occurred in lower density organelles, which may indicate processing during intracellular transport. Only the Mr 90 000 polypeptide was secreted into the culture medium; this was also the only form found in the cytosol fraction.
Targeting mechanisms of neutrophil elastase (NE) and other luminal proteins stored in myeloperoxidase (MPO)-positive secretory lysosomes/primary granules of neutrophils are unknown. These granules contain an integral membrane protein, CD63, with an adaptor protein-3-dependent granule delivery system. Therefore, we hypothesized that CD63 cooperates in granule delivery of the precursor of NE (proNE). Supporting this hypothesis, an association was demonstrated between CD63 and proNE upon coexpression in COS cells. This also involved augmented cellular retention of proNE requiring intact large extracellular loop of CD63. Furthermore, depletion of CD63 in promyelocytic HL-60 cells with RNA interference or a CD63 mutant caused reduction of cellular NE. However, the proNE steady-state level was similar to wild type in CD63-depleted clones, making it feasible to examine possible effects of CD63 on NE trafficking. Thus, depletion of CD63 led to reduced processing of proNE into mature NE and reduced constitutive secretion. Furthermore, CD63-depleted cells showed a lack of morphologically normal granules, but contained MPO-positive cytoplasmic vacuoles with a lack of proNE and NE. Collectively, our data suggest that granule proteins may cooperate in targeting; CD63 can be involved in ER or Golgi export, cellular retention, and granule targeting of proNE before storage as mature NE. (Blood. 2008;112:3444-3454) IntroductionHematopoietic cells play a critical role in host defense, for which they are equipped with secretory lysosomes or lysosome-related organelles that can release cell-specific cytolytic proteins by regulated secretion. 1,2 The secretory lysosomes/primary granules of neutrophils are furnished with an array of proteins that includes hematopoietic serine proteases along with myeloperoxidase (MPO), other microbicidal proteins, and specific transmembrane proteins. 3,4 The precise functions of the hematopoietic serine proteases-neutrophil elastase (NE), cathepsin G, proteinase 3, and azurocidin-are not fully known, but all 4 are thought to be important in the innate immunity function provided by neutrophils. 5,6 These proteases are synthesized as transient proforms that become catalytically active (except for azurocidin) by removal of an N-terminal propeptide after granule targeting. 7,8 Lysosome hydrolases and granzymes use a mannose-6-phosphate (MP) signal and binding to an MP receptor for targeting, 9,10 but the signals for the targeting of hematopoietic serine proteases are not yet known. Cargo proteins can be transported to secretory lysosomes independent of the MP system, 11 as is illustrated by the fact that in I-cell disease, neutrophils and other cells have a normal content of hydrolases despite a lack of MP synthesis. 12 The delivery of a soluble protein might occur through the assistance of a cooperating transmembrane partner that establishes contact with adaptor proteins (APs) to recruit the transport system necessary for targeting. The adaptor protein AP-3 is known to have a role in bringing transmembr...
The eight-twenty-one (ETO) homologues, represented by ETO, myeloid transforming gene-related protein 1 (MTGR1) and myeloid transforming gene chromosome 16 (MTG16), are nuclear repressor proteins. ETO is part of the fusion protein acute myeloid leukaemia (AML)1-ETO, resulting from the translocation (8;21). Similarly, MTG16 is disrupted to become part of AML1/MTG16 in t(16;21). The aberrant expression of these chimeras could affect interplay between ETO homologues and contribute to the leukaemogenic process. We investigated possible interactions between the ETO homologues. Ectopic co-expression in COS-cells resulted in heterodimerisation of the various ETO homologues suggesting that they may co-operate. Similarly, the chimeric oncoprotein AML1-ETO interacted with both MTGR1 and MTG16. However, results from cell lines endogenously expressing more than one ETO homologue did not demonstrate co-precipitation. Results from IP-Western and size determination by gel filtration of deletion mutants expressed in COS-cells, indicated an important role of the HHR domain for oligomerisation. A role was also suggested for the Nervy domain in the homologue interactions. Our results suggest that ETO homologues can interact with each other as well as with AML1-ETO, although it is unclear as to what extent these interactions occur in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.