Trabecular (or cancellous) bone has been shown to respond to mechanical loading throughout ontogeny and thus can provide unique insight into skeletal function and locomotion in comparative studies of living and fossil mammalian morphology. Trabecular bone of the hand may be particularly functionally informative because the hand has more direct contact with the substrate compared with the remainder of the forelimb during locomotion in quadrupedal mammals. This study investigates the trabecular structure within the wrist across a sample of haplorhine primates that vary in locomotor behaviour (and thus hand use) and body size. High-resolution microtomographic scans were collected of the lunate, scaphoid, and capitate in 41 individuals and eight genera (Homo, Gorilla, Pan, Papio, Pongo, Symphalangus, Hylobates, and Ateles). We predicted that particular trabecular parameters would 1) vary across suspensory, quadrupedal, and bipedal primates based on differences in hand use and load, and 2) scale with carpal size following similar allometric patterns found previously in other skeletal elements across a larger sample of mammals and primates. Analyses of variance (trabecular parameters analysed separately) and principal component analyses (trabecular parameters analysed together) revealed no clear functional signal in the trabecular structure of any of the three wrist bones. Instead, there was a large degree of variation within suspensory and quadrupedal locomotor groups, as well as high intrageneric variation within some taxa, particularly Pongo and Gorilla. However, as predicted, Homo sapiens, which rarely use their hands for locomotion and weight support, were unique in showing lower relative bone volume (BV/TV) compared with all other taxa. Furthermore, parameters used to quantify trabecular structure within the wrist scale with size generally following similar allometric patterns found in trabeculae of other mammalian skeletal elements. We discuss the challenges associated with quantifying and interpreting trabecular bone within the wrist.
In the Pleistocene faunas of the island of Crete, Cervidae was one of the most abundant taxa. Respective species vary in body size, including dwarfs, and skeletal morphology; however, the number of species and the identity of the mainland ancestor(s) are still debated. In this paper, we morphologically and morphometrically describe and analyze eight skulls of Cretan deer from a so far little known fossil site near Gerani, Rethymnon, Greece. The recorded character suite allows for affiliation to dwarfed Candiacervus Kuss, 1975, Candiacervus ropalophorus de Vos, 1984 and C. reumeri van der Geer, 2018. It comprises previously unknown unique traits, some of them hinting to sexual dimorphism. Comparisons of the Candiacervus skulls presented here with those of cervids belonging to Megalocerotini Brooke, 1828, s.s. and s.l. stress certain similarities; yet more material is needed to reconstruct Candiacervus’ phylogenetic position. The newly detected craniodental specifics allow for more insights into island adaptation of Candiacervus; at the same time, they blur the morphological heritage of their mainland ancestors.
In Ruminantia, the lacrimal bone forms a considerable part of the facial skeleton, and the morphology of its facial facet is highly variable when compared to other mammals. In this study, we quantify the species‐specific variability in size and shape of the lacrimal facial facet in species of Cervidae (deer) and relate it to systematics and various aspects of their ecology and behavior. We sampled 143 skull specimens from 10 genera; 12 Moschus and 3 Tragulus specimens were used as outgroups. We find that size and shape of the lacrimal facial facet allow differentiating most species analyzed here, except for Mazama gouazoubira and Capreolus capreolus. Size and shape of the lacrimal facial facet vary widely across Cervidae regardless of their systematic relationships, ecology or behavior. Thus, we could not detect a unique signature of adaptational criteria in lacrimal morphology. Our data indicate that the lacrimal facial facet scales allometrically with skull size, in particular, the lacrimojugal length scales positively and the lacrimomaxillar length scales negatively. However, correlation analyses did not reveal any differences in the integration of the lacrimal bone with any specific skull module in any of the species compared. Lastly, we could not ascertain any correlation between the size and position of the preorbital depression with the size and shape of the lacrimal facial facet. We conclude that the lacrimal facial facet is highly flexible and may rapidly adjust to its surrounding bones. Its allometric growth appears to be an example of exaptation: changes in size and shape in the context of the increase of the skull length provide lacrimal contacts, in particular, a lacrimojugal one, which may serve to reduce mechanical loads resulting from increasingly larger antlers in large cervids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.