Alginate is considered an exceptional biomaterial due to its hydrophilicity, biocompatibility, biodegradability, nontoxicity and low-cost in comparison with other biopolymers. We have recently demonstrated that the incorporation of 1% graphene oxide (GO) into alginate films crosslinked with Ca
2+
cations provides antibacterial activity against
Staphylococcus aureus
and methicillin-resistant
Staphylococcus epidermidis
, and no cytotoxicity for human keratinocyte HaCaT cells. However, many other reports in literature have shown controversial results about the toxicity of GO demanding further investigation. Furthermore, the synergic effect of GO with other divalent cations with intrinsic antibacterial and cytotoxic activity such as Zn
2+
has not been explored yet. Thus, here, two commercially available sodium alginates were characterised and utilized in the synthesis of zinc alginate films with GO following the same chemical route reported for the calcium alginate/GO composites. The results of this study showed that zinc release, water sorption/diffusion and wettability depended significantly on the type of alginate utilized. Furthermore, Zn
2+
and GO produced alginate films with increased water diffusion, wettability and opacity. However, neither the combination of GO with Zn
2+
nor the use of different types of sodium alginates modified the antibacterial activity and cytotoxicity of the zinc alginates against these Gram-positive pathogens and human cells respectively.
Carboxylated schizophyllan (sclerox) samples of different degrees of oxidation were molecularly characterized by size exclusion chromatography equipped with a multi-angle light scattering detector (SEC-MALS) in 0.10 M aqueous NaCl solution. The molar mass distribution obtained by SEC-MALS shows that sclerox of low degree of oxidation is dissolved mainly as the trimer, whereas the trimer and single chain coexist in solution of sclerox of high degree of oxidation. The trimer of sclerox is much more flexible than the fully ordered triple helix of the parent schizophyllan and easily dissociates into single chains upon heating.
Carboxylated schizophyllan ("sclerox") is a chemically modified polysaccharide obtained by partial periodate oxidation and subsequent chlorite oxidation of schizophyllan, a water-soluble neutral polysaccharide having a β-1,3-linked glucan backbone and a β-1,6-linked d-glucose residue side chain at every third residue of the main chain. The triple helix of schizophyllan in water has a cooperative order-disorder transition associated with the side chains. The transition is strongly affected by the presence (mole fraction) of dimethylsulfoxide (DMSO). In the present study, the solvent effects on the order-disorder transition of sclerox with different degrees of carboxylation (DS) in water-DMSO mixtures were investigated with differential scanning calorimetry and optical rotation. The transition temperature ( T) and transition enthalpy (Δ H) strongly depended on the mole fraction of DMSO ( x). Data were further analyzed with the statistical theory for the linear cooperative transition, taking into account the solvent effect, where DMSO molecules are selectively associated with the unmodified side chains. The modified side chain does not contribute to the transition; hence, Δ H decreases with increasing DS. The dependence of T on the DMSO content becomes weaker than that for unmodified schizophyllan. The theoretical analyses indicated that the number of sites binding with the DMSO molecule and the successive ordered sequence of the ordered unit of the triple helix are changed by carboxylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.