Soil fungi are known to contain a rich variety of defense metabolites that allow them to compete with other organisms (fungi, bacteria, nematodes, and insects) and help them occupy more preferential areas at the expense of effective antagonism. These compounds possess antibiotic activity towards a wide range of other microbes, particularly fungi that belong to different taxonomical units. These compounds include peptaibols, which are non-ribosomal synthesized polypeptides containing non-standard amino acid residues (alpha-aminoisobutyric acid mandatory) and some posttranslational modifications. We isolated a novel antibiotic peptide from the culture medium of Emericellopsis alkalina, an alkalophilic strain. This peptide, called emericellipsin A, exhibited a strong antifungal effect against the yeast Candida albicans, the mold fungus Aspergillus niger, and human pathogen clinical isolates. It also exhibited antimicrobial activity against some Gram-positive and Gram-negative bacteria. Additionally, emericellipsin A showed a significant cytotoxic effect and was highly active against Hep G2 and HeLa tumor cell lines. We used NMR spectroscopy to reveal that this peptaibol is nine amino acid residues long and contains non-standard amino acids. The mode of molecular action of emericellipsin A is most likely associated with its effects on the membranes of cells. Emericellipsin A is rather short peptaibol and could be useful for the development of antifungal, antibacterial, or anti-tumor remedies.
We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of D-amino acids, lack of the Ca 2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), N-acylation of the ornithine side chain. These major components of the peptide antibiotic family have pronounced activity against Grampositive bacteria. The mechanism of action of gausemycins was explored by a number of methods, showing significant differences compared to glycopeptides and related lipopeptides. Gausemycins exhibit only slight Ca 2+ -dependence of antimicrobial activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.
Antibiotics produced by symbiotic microorganisms were previously shown to be of crucial importance for ecological communities, including ants. Previous works on ant–actinobacteria symbiosis are mainly focused on farming ants, which use antifungal microbial secondary metabolites to control pathogens in their fungal gardens. In this work, we studied microorganisms associated with carpenter ant Camponotus vagus. Pronounced antifungal activity of isolated actinobacteria strain A10 was found to be facilitated by biosynthesis of the antimycin A complex, consisting of small hydrophobic depsipeptides with high antimicrobial and cytotoxic activity. The actinomycete strain A10 was identified as Streptomyces albidoflavus. We studied the antagonistic activity of strain A10 against several entomopathogenic microorganisms. The antifungal activity of this strain potentially indicates a defensive symbiosis with the host ant, producing antimycins to protect carpenter ants against infections. The nature of this ant-microbe association however remains to be established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.