This paper discusses problems related to more cost-effective operation of wind parks. A new rational solution of storing excess energy in the form of hydrogen is described. As hydrogen is produced by the electrolysis process, focus here is on electrolyser and wind turbine interconnections with relevant converter topologies and on the most feasible options.
This paper presents findings of a R&D project targeted to the development of a galvanically isolated step-down DC/DC converter for electrolyzer integration with renewable energy systems. The presented converter with an improved control algorithm for the full-bridge active rectifier features reduced energy circulation and switching losses. The performance can be improved under wide input voltage and load variations. The advantages of the converter were verified with a 1 kW converter prototype and the test results were in full agreement with the expected waveforms. The presented steadystate operation principle and mathematical analysis of the converter based on the simulation and experimental results can be used as design guidelines for component and parameter estimation in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.