Capoeta is a herbivorous cyprinid fish genus, widely distributed in water bodies of Western Asia. Recent species show a distinct biogeographic pattern with endemic distribution in large fluvial drainage basins. As other cyprinids, the species of this genus are characterized by the presence of the pharyngeal bone with pharyngeal teeth. Despite this, the detailed morphology of the pharyngeal teeth, its interspecific and topologic variations, and the importance for taxonomy and phylogeny of the genus Capoeta are still not established. For the first time, a detailed comprehensive study of the pharyngeal dentition of 10 Capoeta species has been provided. The morphologic study of the pharyngeal dentition bases on the 3D microtomography and follows the purpose to evaluate the potential taxonomic and phylogenetic signals of these elements, as well as to study interspecific and topologic variations of the pharyngeal teeth. In this study, we propose a new methodology to categorize the studied pharyngeal teeth in 18 shape classes. The results of this study show that the detailed 3D morphology of the pharyngeal teeth is a useful tool for the identification of isolated teeth at the generic and/or specific level and that in certain cases, the tooth position in the teeth rows can be identified. Additionally, the preliminary analysis shows that the morphology of the pharyngeal teeth provides a potential phylogenetic signal. Both these patterns are very important for the taxonomy of cyprinid fishes and especially can be applied to fossil records.
In this paper, we describe ectothermic vertebrate assemblages from the Kargı 1, Kargı 2, Kargı 3, Harami1, Harami 3, Hancılı, Keseköy, Çandır and Bağiçi localities in Turkey. The ages of these localities range from the latest Oligocene to the middle Miocene. The preserved non-mammalian fauna of the studied localities includes fishes (Luciobarbus sp., Barbus sp., Luciobarbus vel Barbus sp., aff.
We studied 4 Ma old isolated pharyngeal teeth from lake sediments of Çevirme (Tekman Palaeolake, Erzurum Province). Based on shape characters defined for 3D models of modern species, we found that the Pliocene lake constitutes sympatric occurrence of four
Capoeta
species (
C
. cf.
umbla
,
C
. cf.
baliki
,
C
. cf.
sieboldi
and
C
. sp.
sevangi/capoeta
), whose modern relatives belong to a monophyletic clade inhabiting today three different drainage systems of this region (Euphrates River, Kura River and Black Sea). We interpreted this high local diversity of closely related species in terms of the species-flock model. The Tekman palaeolake was a part of an unrecognized extended late Miocene to Pliocene palaeolake system in the present-day Armenian Highland, which has been disrupted by Pliocene tectonic activities. Surface uplift of the Armenian Highland contributed to the very characteristic biogeographic distribution and endemism of
Capoeta
in West Asian drainage systems. Thus, we proposed a species-flock scenario for the evolution and dispersal of the cyprinid genus
Capoeta
in a huge unrecognized palaeolake system in the present-day Armenian Highland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.