SummaryIn this study we analyzed and compared the organization of the tubulin cytoskeleton in nodules of Medicago truncatula and Pisum sativum.We combined antibody labeling and green fluorescent protein tagging with laser confocal microscopy to observe microtubules (MTs) in nodules of both wild-type (WT) plants and symbiotic plant mutants blocked at different steps of nodule development.The 3D MT organization of each histological nodule zone in both M. truncatula and P. sativum is correlated to specific developmental processes. Endoplasmic MTs appear to support infection thread growth, infection droplet formation and bacterial release into the host cytoplasm in nodules of both species. No differences in the organization of the MT cytoskeleton between WT and bacterial release mutants were apparent, suggesting both that the phenotype is not linked to a defect in MT organization and that the growth of hypertrophied infection threads is supported by MTs. Strikingly, bacterial release coincides with a change in the organization of cortical MTs from parallel arrays into an irregular, crisscross arrangement. After release, the organization of endoplasmic MTs is linked to the distribution of symbiosomes.The 3D MT organization of each nodule histological zone in M. truncatula and P. sativum was analyzed and linked to specific developmental processes.
The tubulin cytoskeleton plays an important role in establishing legume–rhizobial symbiosis at all stages of its development. Previously, tubulin cytoskeleton organization was studied in detail in the indeterminate nodules of two legume species, Pisum sativum and Medicago truncatula. General as well as species-specific patterns were revealed. To further the understanding of the formation of general and species-specific microtubule patterns in indeterminate nodules, the tubulin cytoskeleton organization was studied in three legume species (Vicia sativa, Galega orientalis, and Cicer arietinum). It is shown that these species differ in the shape and size of rhizobial cells (bacteroids). Immunolocalization of microtubules revealed the universality of cortical and endoplasmic microtubule organization in the meristematic cells, infected cells of the infection zone, and uninfected cells in nodules of the three species. However, there are differences in the endoplasmic microtubule organization in nitrogen-fixing cells among the species, as confirmed by quantitative analysis. It appears that the differences are linked to bacteroid morphology (both shape and size).
The nitrogen-fixing nodule is a unique ecological niche for rhizobia, where microaerobic conditions support functioning of the main enzyme of nitrogen fixation, nitrogenase, which is highly sensitive to oxygen. To accommodate bacteria in a symbiotic nodule, the specialised infected cells increase in size owing to endoreduplication and are able to shelter thousands of bacteria. Bacteria are isolated from the cytoplasm of the plant cell by a membrane-bound organelle-like structure termed the symbiosome. It is enclosed by a symbiosome membrane, mainly of plant origin but with some inclusion of bacterial proteins. Within the symbiosome, bacterial cells differentiate into bacteroids a form that is specialised for nitrogen fixation. In this review, we briefly summarise recent advances in studies of differentiation both of symbiosomes and of the infected cells that accommodate them. We will consider the role of CCS52A, DNA topoisomerase VI, tubulin cytoskeleton rearrangements in differentiation of infected cells, the fate of the vacuole, and the distribution of symbiosomes in the infected cells. We will also consider differentiation of symbiosomes, paying attention to the role of NCR peptides, vesicular transport to symbiosomes, and mutant analysis of symbiosome development in model and crop legumes. Finally, we conclude that mechanisms involved in redistribution organelles, including the symbiosomes, clearly merit much more attention.
Background and Aims Recent findings indicate that Nod factor signalling is tightly interconnected with phytohormonal regulation that affects the development of nodules. Since the mechanisms of this interaction are still far from understood, here the distribution of cytokinin and auxin in pea (Pisum sativum) nodules was investigated. In addition, the effect of certain mutations blocking rhizobial infection and subsequent plant cell and bacteroid differentiation on cytokinin distribution in nodules was analysed. Methods Patterns of cytokinin and auxin in pea nodules were profiled using both responsive genetic constructs and antibodies. Key Results In wild-type nodules, cytokinins were found in the meristem, infection zone and apical part of the nitrogen fixation zone, whereas auxin localization was restricted to the meristem and peripheral tissues. We found significantly altered cytokinin distribution in sym33 and sym40 pea mutants defective in IPD3/CYCLOPS and EFD transcription factors, respectively. In the sym33 mutants impaired in bacterial accommodation and subsequent nodule differentiation, cytokinin localization was mostly limited to the meristem. In addition, we found significantly decreased expression of LOG1 and A-type RR11 as well as KNOX3 and NIN genes in the sym33 mutants, which correlated with low cellular cytokinin levels. In the sym40 mutant, cytokinins were detected in the nodule infection zone but, in contrast to the wild type, they were absent in infection droplets. Conclusions In conclusion, our findings suggest that enhanced cytokinin accumulation during the late stages of symbiosis development may be associated with bacterial penetration into the plant cells and subsequent plant cell and bacteroid differentiation.
Two bacterial strains Ach-343 and Opo-235 were isolated, respectively from nodules of Miocene-Pliocene relict legumes Astragalus chorinensis Bunge and Oxytropis popoviana Peschkova originated from Buryatia (Baikal Lake region, Russia). For identification of these strains the sequencing of 16S rRNA (rrs) gene was used. Strain Opo-235 belonged to the species Mesorhizobium japonicum, while the strain Ach-343 was identified as M. kowhaii (100 and 99.9% rrs similarity with the type strains MAFF 303099T and ICMP 19512T, respectively). Symbiotic genes of these strains as well as some genes that promote plant growth (acdS, gibberellin- and auxin-synthesis related genes) were searched throughout the whole genome sequences. The sets of plant growth-promoting genes found were almost identical in both strains, whereas the sets of symbiotic genes were different and complemented each other with several nod, nif, and fix genes. Effects of mono- and co-inoculation of Astragalus sericeocanus, Oxytropis caespitosa, Glycyrrhiza uralensis, Medicago sativa, and Trifolium pratense plants with the strains M. kowhaii Ach-343 and M. japonicum Opo-235 expressing fluorescent proteins mCherry (red) and EGFP (green) were studied in the gnotobiotic plant nodulation assay. It was shown that both strains had a wide range of host specificity, including species of different legume genera from two tribes (Galegeae and Trifolieae). The effects of co-microsymbionts on plants depended on the plant species and varied from decrease, no effect, to increase in the number of nodules, nitrogen-fixing activity and plant biomass. One of the reasons for this phenomenon may be the discovered complementarity in co-microsymbionts of symbiotic genes responsible for the specific modification of Nod-factors and nitrogenase activity. Localization and co-localization of the strains in nodules was confirmed by the confocal microscopy. Analysis of histological and ultrastructural organization of A. chorinensis and O. popoviana root nodules was performed. It can be concluded that the strains M. kowhaii Ach-343 and M. japonicum Opo-235 demonstrate lack of high symbiotic specificity that is characteristic for primitive legume-rhizobia systems. Further study of the root nodule bacteria having complementary sets of symbiotic genes will contribute to clarify the evolutionary paths of legume-rhizobia relationships and the mechanisms of effective integration between partners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.