RNA–protein interactions are crucial for most biological processes in all organisms. However, it appears that the complexity of RNA-based regulation increases with the complexity of the organism, creating additional regulatory circuits, the scope of which is only now being revealed. It is becoming apparent that previously unappreciated features, such as disordered structural regions in proteins or non-coding regions in DNA leading to higher plasticity and pliability in RNA–protein complexes, are in fact essential for complex, precise and fine-tuned regulation. This review addresses the issue of the role of RNA–protein interactions in generating eukaryotic complexity, focusing on the newly characterized disordered RNA-binding motifs, moonlighting of metabolic enzymes, RNA-binding proteins interactions with different RNA species and their participation in regulatory networks of higher order.
CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene.
The CRNDE gene seems to play an oncogenic role in cancers, though its exact function remains unknown. Here, we tried to assess its usefulness as a molecular prognostic marker in ovarian cancer. Based on results of our microarray studies, CRNDE transcripts were further analyzed by Real-Time qPCR-based profiling of their expression. The qPCR study was conducted with the use of personally designed TaqMan assays on 135 frozen tissue sections of ovarian carcinomas from patients treated with platinum compounds and either cyclophosphamide (PC, N = 32) or taxanes (TP, N = 103). Elevated levels of two different CRNDE transcripts were a negative prognostic factor; they increased the risk of death and recurrence in the group of patients treated with TP, but not PC (DNA-damaging agents only). Higher associations were found for overexpression of the short CRNDE splice variant (FJ466686): HR 6.072, 95% CI 1.814–20.32, p = 0.003 (the risk of death); HR 15.53, 95% CI 3.812–63.28, p < 0.001 (the risk of recurrence). Additionally, accumulation of the TP53 protein correlated with decreased expression of both CRNDE transcripts in tumor cells. Our results depict CRNDE as a potential marker of poor prognosis in women with ovarian carcinomas, and suggest that its significance depends on the therapeutic regimen used.
Entosis—a homotypic insertion of one cell into another, resulting in a death of the invading cell—has been described in many reports, but crucial aspects of its molecular mechanisms and clinical significance still remain controversial. While actomyosin contractility of the invading cell is very well established as a driving force in the initial phase, and autophagy induced in the outer cell is determined as the main mechanism of degradation of the inner cell, many details remain unresolved. The multitude of triggering factors and crisscrossing molecular pathways described in entosis regulation make interpretations difficult. The question of the physiological role of entosis also remains unanswered. In this review, we summarize the knowledge of molecular mechanisms and clinical data concerning entosis accumulated so far, highlighting both coherent explanations and controversies.
The CEBPA gene is known to be mutated or abnormally expressed in several cancers. This is the first study assessing the clinical impact of CEBPA gene status and expression on the ovarian cancer outcome. The CEBPA gene sequence was analyzed in 118 ovarian cancer patients (44 platinum/cyclophosphamide (PC)-treated and 74 taxane/platinum (TP)-treated), both in tumors and blood samples, and in blood from 236 healthy women, using PCR-Sanger sequencing and Real-Time quantitative PCR (qPCR)-based genotyping methods, respectively. The CEBPA mRNA level was examined with Reverse Transcription quantitative PCR (RT-qPCR). The results were correlated to different clinicopathological parameters. Thirty of 118 (25.4%) tumors harbored the CEBPA synonymous c.690G>T polymorphism (rs34529039), that we showed to be related to up-regulation of CEBPA mRNA levels (p=0.0059). The presence of the polymorphism was significantly associated with poor prognosis (p=0.005) and poor response to the PC chemotherapy regimen (p=0.024). In accordance, elevated CEBPA mRNA levels negatively affected patient survival (p<0.001) and tumor response to the PC therapy (p=0.014). The rs34529039 SNP did not affect the risk of developing ovarian cancer. This is the first study providing evidence that the c.690G>T, p.(Thr230Thr) (rs34529039) polymorphism of the CEBPA gene, together with up-regulation of its mRNA expression, are negative factors worsening ovarian cancer outcome. Their adverse clinical effect depends on a therapeutic regimen used, which might make them potential prognostic and predictive biomarkers for response to DNA-damaging chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.