Bisphenol A (BPA), an estrogenic compound, is used in manufacture of polycarbonate plastics and epoxy resins. Curcumin, the active ingredient of turmeric, is a potent protective compound against cardiac diseases. In this study the protective effect of nanomicelle curcumin on BPAinduced subchronic cardiotoxicity in rats was evaluated. Rats were divided into 6 groups including control, nanomicelle curcumin (50 mg/kg, gavage), BPA (50 mg/kg, gavage), nanomicelle curcumin (10, 25, and 50 mg/kg) plus BPA. The treatments were continued for 4 weeks. Results revealed that BPA significantly induced histophatological injuries including focal lymphatic inflammation, nuclear degenerative changes and cytoplasmic vacuolation, increased body weight, systolic and diastolic blood pressures, malondialdehyde and Creatine phosphokinase-MB level and decreased glutathione content in comparison with control group. In addition, in electrocardiographic graph, RR, QT, and PQ intervals were increased by BPA. Western blot analysis showed that BPA up-regulated phosphorylated p38 (p38-mitogen-activated protein kinase) and JNK (c-jun NH 2 terminal kinases), while down-regulated phosphorylated AKT (Protein Kinase B) and ERK1/2 (extracellular signal-regulated protein kinases 1 and 2). However, nanomicelle curcumin (50 mg/kg) significantly improved these toxic effects of BPA in rat heart tissue.The results provide evidence that nanomicelle curcumin showed preventive effects on subchronic exposure to BPA induced toxicity in the heart tissue in rats.
Entosis—a homotypic insertion of one cell into another, resulting in a death of the invading cell—has been described in many reports, but crucial aspects of its molecular mechanisms and clinical significance still remain controversial. While actomyosin contractility of the invading cell is very well established as a driving force in the initial phase, and autophagy induced in the outer cell is determined as the main mechanism of degradation of the inner cell, many details remain unresolved. The multitude of triggering factors and crisscrossing molecular pathways described in entosis regulation make interpretations difficult. The question of the physiological role of entosis also remains unanswered. In this review, we summarize the knowledge of molecular mechanisms and clinical data concerning entosis accumulated so far, highlighting both coherent explanations and controversies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.