Synthesis and investigation of antimicrobial activity of fifteen novel thiazoles containing cyclohexene moiety are presented. Among the derivatives, compounds 3a-3d, 3f, 3n, and 3o showed very strong activity against the reference Candida spp. strains with MIC = 0.015-3.91 µg/ml. The activity of these compounds is similar and even higher than the activity of nystatin used as positive control. Compounds 3d, 3f, 3n, 3o showed the highest activity with very strong effect towards most of yeasts isolated from clinical materials with MIC = 0.015-7.81 µg/ml. The cytotoxicity studies for the most active compounds showed that Candida spp. growth was inhibited at noncytotoxic concentrations for the mammalian L929 fibroblast. In addition, a good correlation was obtained between lipophilicity of compounds determined using reversed phase thin-layer chromatography and their antifungal activity.
Bacterial infections, especially those caused by strains resistant to commonly used antibiotics and chemotherapeutics, are still a current threat to public health. Therefore, the search for new molecules with potential antimicrobial activity is an important research goal. In this article, we present the synthesis and evaluation of the in vitro antimicrobial activity of a series of 15 new derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid. The potential antimicrobial effect of the new compounds was observed mainly against Gram-positive bacteria. Compound 15, with the 5-nitro-2-furoyl moiety, showed the highest bioactivity: minimum inhibitory concentration (MIC) = 1.95–15.62 µg/mL and minimum bactericidal concentration (MBC)/MIC = 1–4 µg/mL.
Recently, the occurrence of candidiasis has increased dramatically, especially in immunocompromised patients. Additionally, their treatment is often ineffective due to the resistance of yeasts to antimycotics. Therefore, there is a need to search for new antifungals. A series of nine newly synthesized thiazole derivatives containing the cyclopropane system, showing promising activity against Candida spp., has been further investigated. We decided to verify their antifungal activity towards clinical Candida albicans isolated from the oral cavity of patients with hematological malignancies and investigate the mode of action on fungal cell, the effect of combination with the selected antimycotics, toxicity to erythrocytes, and lipophilicity. These studies were performed by the broth microdilution method, test with sorbitol and ergosterol, checkerboard technique, erythrocyte lysis assay, and reversed phase thin-layer chromatography, respectively. All derivatives showed very strong activity (similar and even higher than nystatin) against all C. albicans isolates with minimal inhibitory concentration (MIC) = 0.008–7.81 µg/mL Their mechanism of action may be related to action within the fungal cell wall structure and/or within the cell membrane. The interactions between the derivatives and the selected antimycotics (nystatin, chlorhexidine, and thymol) showed additive effect only in the case of combination some of them and thymol. The erythrocyte lysis assay confirmed the low cytotoxicity of these compounds as compared to nystatin. The high lipophilicity of the derivatives was related with their high antifungal activity. The present studies confirm that the studied thiazole derivatives containing the cyclopropane system appear to be a very promising group of compounds in treatment of infections caused by C. albicans. However, this requires further studies in vivo.
Key points
• The newly thiazoles showed high antifungal activity and some of them — additive effect in combination with thymol.
• Their mode of action may be related with the influence on the structure of the fungal cell wall and/or the cell membrane.
• The low cytotoxicity against erythrocytes and high lipophilicity of these derivatives are their additional good properties.
Graphical abstract
Firstly, metformin and repaglinide were degraded under high temperature/humidity, UV/VIS light, in different pH and oxidative conditions. Secondly, a new validated LC-UV method was examined, as to whether it validly determined these drugs in the presence of their degradation products and whether it is suitable for estimating degradation kinetics. Finally, the respective LC-MS method was used to identify the degradation products. In addition, using FT-IR method, the stability of metformin and repaglinide was scrutinized in the presence of polyvinylpyrrolidone (PVP), mannitol, magnesium stearate, and lactose. Significant degradation of metformin, following the first order kinetics, was observed in alkaline medium. In the case of repaglinide, the most significant and quickest degradation, following the first order kinetics, was observed in acidic and oxidative media (0.1 M HCl and 3% H2O2). Two new degradation products of metformin and nine new degradation products of repaglinide were detected and identified when the stressed samples were examined by our LC-MS method. What is more, the presence of PVP, mannitol, and magnesium stearate proved to affect the stability of metformin, while repaglinide stability was affected in the presence of PVP and magnesium stearate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.