Prior studies have highlighted adolescence as a period of increased risk-taking, which is postulated to result from an overactive reward system in the brain. Longitudinal studies are pivotal for testing these brain-behavior relations because individual slopes are more sensitive for detecting change. The aim of the current study was twofold: (1) to test patterns of age-related change (i.e., linear, quadratic, and cubic) in activity in the nucleus accumbens, a key reward region in the brain, in relation to change in puberty (self-report and testosterone levels), laboratory risk-taking and self-reported risk-taking tendency; and (2) to test whether individual differences in pubertal development and risk-taking behavior were contributors to longitudinal change in nucleus accumbens activity. We included 299 human participants at the first time point and 254 participants at the second time point, ranging between ages 8 -27 years, time points were separated by a 2 year interval. Neural responses to rewards, pubertal development (self-report and testosterone levels), laboratory risk-taking (balloon analog risk task; BART), and self-reported risk-taking tendency (Behavior Inhibition System/Behavior Activation System questionnaire) were collected at both time points. The longitudinal analyses confirmed the quadratic age pattern for nucleus accumbens activity to rewards (peaking in adolescence), and the same quadratic pattern was found for laboratory risk-taking (BART). Nucleus accumbens activity change was further related to change in testosterone and self-reported reward-sensitivity (BAS Drive). Thus, this longitudinal analysis provides new insight in risk-taking and reward sensitivity in adolescence: (1) confirming an adolescent peak in nucleus accumbens activity, and (2) underlining a critical role for pubertal hormones and individual differences in risk-taking tendency.
How children learn from positive and negative performance feedback lies at the foundation of successful learning and is therefore of great importance for educational practice. In this study, we used functional magnetic resonance imaging (fMRI) to examine the neural developmental changes related to feedback-based learning when performing a rule search and application task. Behavioral results from three age groups (8 -9, 11-13, and 18 -25 years of age) demonstrated that, compared with adults, 8-to 9-year-old children performed disproportionally more inaccurately after receiving negative feedback relative to positive feedback. Additionally, imaging data pointed toward a qualitative difference in how children and adults use performance feedback. That is, dorsolateral prefrontal cortex and superior parietal cortex were more active after negative feedback for adults, but after positive feedback for children (8 -9 years of age). For 11-to 13-year-olds, these regions did not show differential feedback sensitivity, suggesting that the transition occurs around this age. Presupplementary motor area/anterior cingulate cortex, in contrast, was more active after negative feedback in both 11-to 13-year-olds and adults, but not 8-to 9-year-olds. Together, the current data show that cognitive control areas are differentially engaged during feedbackbased learning across development. Adults engage these regions after signals of response adjustment (i.e., negative feedback). Young children engage these regions after signals of response continuation (i.e., positive feedback). The neural activation patterns found in 11-to 13-year-olds indicate a transition around this age toward an increased influence of negative feedback on performance adjustment. This is the first developmental fMRI study to compare qualitative changes in brain activation during feedback learning across distinct stages of development.
Attitudes to risk (known probabilities) and attitudes to ambiguity (unknown probabilities) are separate constructs that influence decision making, but their development across adolescence remains elusive. We administered a choice task to a wide adolescent age-range (N = 157, 10-25 years) to disentangle risk- and ambiguity-attitudes using a model-based approach. Additionally, this task was played in a social context, presenting choices from a high risk-taking peer. We observed age-related changes in ambiguity-attitude, but not risk-attitude. Also, ambiguity-aversion was negatively related to real-life risk taking. Finally, the social context influenced only risk-attitudes. These results highlight the importance of disentangling risk- and ambiguity-attitudes in adolescent risk taking.
Negative social feedback often generates aggressive feelings and behavior. Prior studies have investigated the neural basis of negative social feedback, but the underlying neural mechanisms of aggression regulation following negative social feedback remain largely undiscovered. In the current study, participants viewed pictures of peers with feedback (positive, neutral or negative) to the participant's personal profile. Next, participants responded to the peer feedback by pressing a button, thereby producing a loud noise toward the peer, as an index of aggression. Behavioral analyses showed that negative feedback led to more aggression (longer noise blasts). Conjunction neuroimaging analyses revealed that both positive and negative feedback were associated with increased activity in the medial prefrontal cortex (PFC) and bilateral insula. In addition, more activation in the right dorsal lateral PFC (dlPFC) during negative feedback vs neutral feedback was associated with shorter noise blasts in response to negative social feedback, suggesting a potential role of dlPFC in aggression regulation, or top-down control over affective impulsive actions. This study demonstrates a role of the dlPFC in the regulation of aggressive social behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.