Bacterial extracellular vesicles (EVs) perform various biological functions, including those that are critical to microbes. Determination of EVs composition allows for a deep understanding of their role in the bacterial community and communication among them. Cutibacterium acnes, formerly Propionibacterium acnes, are commensal bacteria responsible for various infections, e.g., prosthesis, sarcoidosis, soft-tissue infections, and the most known but still controversial—acnes lesion. In C. acnes, three major phylotypes represented variable disease associations. Herein, for the first time, we present a comparative analysis of EVs obtained from three C. acnes phylotypes (IA1, IB, and II) to demonstrate the existence of differences in their protein and lipid composition. In the following work, the morphological analysis of EVs was performed, and the SDS-PAGE protein profile and the lipid profile were presented using the TLC and MALDI-TOF MS methods. This study allowed us to show major differences between the protein and lipid composition of C. acnes EVs. This is a clear indication that EVs released by different phylotypes of the one species are not identical to each other in terms of composition and should be separately analyzed each time to obtain reliable results.
Herein, 15 phenylpiperazine 3-benzyl-5,5-dimethylhydantoin derivatives (1–15) were screened for modulatory activity towards Msr(A) efflux pump present in S. epidermidis bacteria. Synthesis, crystallographic analysis, biological studies in vitro and structure–activity relationship (SAR) analysis were performed. The efflux pump inhibitory (EPI) potency was determined by employing ethidium bromide accumulation assay in both Msr(A) efflux pump overexpressed (K/14/1345) and deficient (ATCC 12228) S. epidermidis strains. The series of compounds was also evaluated for the capacity to reduce the resistance of K/14/1345 strain to erythromycin, a known substrate of Msr(A). The study identified five strong modulators for Msr(A) in S. epidermidis. The 2,4-dichlorobenzyl-hydantoin derivative 9 was found as the most potent EPI, inhibiting the efflux activity in K/14/1345 at a concentration as low as 15.63 µM. Crystallography-supported SAR analysis indicated structural properties that may be responsible for the activity found. This study identified the first synthetic compounds able to inhibit Msr(A) efflux pump transporter in S. epidermidis. Thus, the hydantoin-derived molecules found can be an attractive group in search for antibiotic adjuvants acting via Msr(A) transporter.
Extracellular vesicles constitute a heterogeneous group of nanoparticles, released by both prokaryotic and eukaryotic cells, which perform various biological functions and participate in cell-cell communication. Bacterial extracellular vesicles are made of lipids, proteins and nucleic acids. There are a number of hypotheses for the formation of extracellular vesicles, but the mechanisms of biogenesis of these structures remain unclear. Hardly soluble metabolites or signaling molecules, DNA and RNA are vesicles cargo. Extracellular vesicles have a protective function, they can eliminate other bacterial cells and participate in horizontal gene transfer. The enzymes contained inside the vesicles facilitate the acquisition of nutrients and help colonize various ecological niches. Signal molecules carried in the vesicles enable biofilm formation. In the secreted extracellular vesicles pathogenic microorganisms carry virulence factors, including toxins, into the host cells. Via vesicles, bacteria can also modulate the host immune system. Bacterial extracellular vesicles are promising vaccine candidates and can be used as drug carriers. The review discusses the current knowledge concerning biogenesis, composition, preparation methods, physiological functions and potential applications of extracellular vesicles secreted by prokaryotic cells.
Cutaneous tuberculosis (CTB) is a very rare disease and accounts for only 1–2% of cases of extrapulmonary tuberculosis (EPTB). Due to the variety of its clinical manifestations, the uncharacteristic appearance of its lesions, resembling other dermatoses in the early stages, and the limited experience of clinicians due to the rarity of CTB, diagnosis is very difficult. Particularly noteworthy is the fact that most cases of EPTB, including skin tuberculosis (TB), can be a manifestation of systemic involvement. In this paper, we present a case of an immunocompromised patient who was diagnosed with CTB almost a year after the first dermatological lesions were located on the lower extremities. At the same time, due to respiratory symptoms, a diagnosis of pulmonary TB (PTB) was made, and radiological and microbiological confirmations were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.