Isoniazid (INH), a key agent in the treatment of tuberculosis (TB), is metabolized primarily by the genetically polymorphic N-acetyltransferase 2 (NAT2) enzyme. Patients treated with INH can be classified as fast, intermediate, and slow acetylators. The objective of this study was to explore the relationship between NAT2 genotypes and the serum concentrations of INH. Blood samples from 130 patients were taken for the analysis, and plasma INH concentrations were determined by using the high-performance liquid chromatography (HPLC) technology. Acetylation genotype was determined on genomic DNA by using an allele-specific polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP) assay. Once the NAT2 genotypes were established, patients were classified into three categories: fast, intermediate, and slow acetylators. Of the 130 patients studied, 84 (64.6%) were slow, 39 (30%) were intermediate, and 7 (5.4%) were fast acetylators. Analysis of INH concentrations in the blood of patients receiving the approximate doses of the drug revealed that, at the time intervals examined, the average concentration of INH was 2- to 7-fold higher among slow acetylators compared to fast and intermediate acetylators. Conclusion. Determining mutations in the NAT2 gene enabled the identification of the INH acetylation type in patients and the genotyping results were consistent with the phenotype determined by methods of measurement of drug bioavailability.
Background
The majority of animal tuberculosis (TB) cases reported in wildlife in Poland over the past 20 years have concerned the European bison inhabiting the Bieszczady Mountains in Southeast Poland: an area running along the border of Southeast Poland. As no TB cases have been reported in domestic animals in this region since 2005, any occurrence of TB in the free-living animals inhabiting this area might pose a real threat to local livestock and result in the loss of disease-free status. The aim of the study was to describe the occurrence of tuberculosis in the wildlife of the Bieszczady Mountains and determine the microbiological and molecular characteristics of any cultured strains. Lymph node samples were collected for analysis from 274 free-living animals, including European bison, red foxes, badgers, red deer, wild boar and roe deer between 2011 and 2017. Löwenstein–Jensen and Stonebrink media were used for culture. Molecular identification of strains was performed based on hsp65 sequence analysis, the GenoType®MTBC (Hain Lifescience, Germany) test, spoligotyping and MIRU-VNTR analysis.
Results
Mycobacterium caprae was isolated from the lymph nodes of 21 out of 55 wild boar (38.2%; CI 95%: 26.5%, 51.4%) and one roe deer. Since 2014, no new TB cases have been reported in the Bieszczady European bison population.
Conclusions
The identification of TB in wild boar in the Bieszczady is an alarming phenomenon, which requires further investigation. The Bieszczady mountains are a precious, unique area, home to many protected species. However, it is also the only area in Poland where TB cases have been reported in free-living animals. The occurrence of TB in wild boar inhabiting this area might pose a real threat to local livestock and many of the protected species (for example European bison that can share feeding places with wild boar). Given this situation, ongoing monitoring of the prevalence of TB should be conducted, and protective measures should be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.