2General Relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. We test this using observations of the Galactic center star S0-2. We combine existing spectroscopic and astrometric measurements from 1995-2017, which cover S0-2's 16-year orbit, with measurements in 2018 March to September which cover three events during its closest approach to the black hole. We detect the combination of special relativistic-and gravitational-redshift, quantified using a redshift parameter, Υ. Our result, Υ = 0.88 ± 0.17, is consistent with General Relativity (Υ = 1) and excludes a Newtonian model (Υ = 0 ) with a statistical significance of 5 σ.General Relativity (GR) has been thoroughly tested in weak gravitational fields in the Solar System (1), with binary pulsars (2) and with measurements of gravitational waves from stellarmass black-hole binaries (3,4). Observations of short-period stars in our Galactic center (GC) (5-8) allow GR to be tested in a different regime (9): the strong field near a supermassive black hole (SMBH) (10,11). The star S0-2 (also known as S2) has a 16 year orbit around Sagittarius A* (Sgr A*), the SMBH at the center of the Milky Way. In 2018 May, it reached its point of closest approach, at a distance of 120 astronomical units (au) with a velocity reaching 2.7% of the speed of light. Within a 6 months interval of that date, the star also passed through its maximum (March) and minimum velocity (September) along the line-of-sight, spanning a range of 6000 km s −1 in radial velocity (RV - Fig. 1). We present observations of all three events and combine them with data from 1995-2017 ( Fig. 2).During 2018, the close proximity of S0-2 to the SMBH causes the relativistic redshift, which is the combination of the transverse Doppler shift from special relativity and the gravitational redshift from GR. This deviation from a Keplerian orbit was predicted to reach 200 km s −1 (Fig. 3) and is detectable with current telescopes. The GRAVITY collaboration (9) previously reported a similar measurement. Our measurements are complementary: i) we present a 3 complete set of independent measurements with 3 additional months of data, doubling the time baseline for the year of closest approach, and including the third turning point (RV minimum) in September 2018, ii) we use three different spectroscopic instruments in 2018, which allows us to probe the presence of instrumental biases, iii) we perform an analysis of the systematic errors that may arise from an experiment spanning over 20 years to test for bias in the result, and iv) we publicly release the stellar measurements and the posterior probability distributions.We use a total of 45 astrometric positional measurements (spanning 24 years) and 115 RVs (18 years) to fit the orbit of S0-2. Of these, 11 are new astrometric measurements of S0-2 from 2016 to 2018 and 28 are new RV measurements from 2017 and 2018 ( Fig 1). Astrometric measurements were obtained at the W. M. Keck Observatory using speckle imaging (a ...
The electromagnetic counterpart to the Galactic center supermassive black hole, Sgr A*, has been observed in the near-infrared for over 20 years and is known to be highly variable. We report new Keck Telescope observations showing that Sgr A* reached much brighter flux levels in 2019 than ever measured at near-infrared wavelengths. In the K band, Sgr A* reached flux levels of ∼ 6 mJy, twice the level of the previously observed peak flux from > 13, 000 measurements over 130 nights with the VLT and Keck Telescopes. We also observe a factor of 75 change in flux over a 2-hour time span with no obvious color changes between 1.6 µm and 2.1 µm. The distribution of flux variations observed this year is also significantly different than the historical distribution. Using the most comprehensive statistical model published, the probability of a single night exhibiting peak flux levels observed this year, given historical Keck observations, is less than 0.3%. The probability to observe the flux levels similar to all 4 nights of data in 2019 is less than 0.05%. This increase in brightness and variability may indicate a period of heightened activity from Sgr A* or a change in its accretion state. It may also indicate that the current model is not sufficient to model Sgr A* at high flux levels and should be updated. Potential physical origins of Sgr A*'s unprecedented brightness may be from changes in the accretion-flow as a result of the star S0-2's closest passage to the black hole in 2018 or from a delayed reaction to the approach of the dusty object G2 in 2014. Additional multi-wavelength observations will be necessary to both monitor Sgr A* for potential state changes and to constrain the physical processes responsible for its current variability.
The Galactic Center (GC) is dominated by the gravity of a super-massive black hole (SMBH), Sagittarius A * , and is suspected to contain a sizable population of binary stars. Such binaries form hierarchical triples with the SMBH, undergoing Eccentric Kozai-Lidov (EKL) evolution, which can lead to high eccentricity excitations for the binary companions' mutual orbit. This effect can lead to stellar collisions or Roche-lobe crossings, as well as orbital shrinking due to tidal dissipation. In this work we investigate the dynamical and stellar evolution of such binary systems, especially with regards to the binaries' post-main-sequence evolution. We find that the majority of binaries (∼ 75%) is eventually separated into single stars, while the remaining binaries (∼ 25%) undergo phases of common-envelope evolution and/or stellar mergers. These objects can produce a number of different exotic outcomes, including rejuvenated stars, G2-like infrared-excess objects, stripped giant stars, Type Ia supernovae (SNe), cataclysmic variables (CVs), symbiotic binaries (SBs), or compact object binaries. We estimate that, within a sphere of 250 Mpc radius, about 7.5 to 15 Type Ia SNe per year should occur in galactic nuclei due to this mechanism, potentially detectable by ZTF and ASAS-SN. Likewise we estimate that, within a sphere of 1 Gpc 3 volume, about 10 to 20 compact object binaries form per year that could become gravitational wave sources. Based on results of EKL-driven compact object binary mergers in galactic nuclei by Hoang et al. (2018), this compact object binary formation rate translates to about 15 to 30 events per year detectable by Advanced LIGO. nature of gravity, stellar cluster dynamics, and general relativity (GR) over the last decades (e.g., Ghez et al.
Nature volume 577, pages337-340 (2020) https://www.nature.com/articles/s41586-019-1883-yThe central 0.1 parsecs of the Milky Way host a supermassive black hole identified with the position of the radio and infrared source Sagittarius A* (refs 1,2 ), a cluster of young, massive stars (the S stars 3 ) and various gaseous features 4,5 . Recently, two unusual objects have been found to be closely orbiting Sagittarius A*: the so-called G sources, G1 and G2. These objects are unresolved (having a size on the order of 100 astronomical units, except at periapse where the tidal interaction with the black hole stretches them along the orbit) and they show both thermal dust emission and line emission from ionized gas 6-10 . G1 and G2 have generated attention because they appear to be tidally interacting with the supermassive Galactic black hole, possibly enhancing its accretion activity. No broad consensus has yet been reached concerning their nature: the G objects show the characteristics of gas and dust clouds but display the dynamical properties of stellar-mass objects. Here we report observations of four additional G objects, all lying within 0.04 parsecs of the black hole, and forming a class that is probably unique to this environment. The widely varying orbits derived for the six G objects demonstrate that they were commonly but separately formed.We used near-infrared (NIR) spectro-imaging data obtained over the past 13 years 11 at the W. M. Keck Observatory with the OSIRIS integral field spectrometer 12 , coupled with laser guide star adaptive optics wave front corrections 13 . OSIRIS data-cubes have two spatial dimensions -about 3 arcsec × 2 arcsec surrounding Sgr A* with a plate-scale of 35 mas-and one wavelength dimension -covering the Kn3 band, 2.121-2.229 µm, with a spectral resolution of R ≈ 3,800. We selected 24 datacubes based on image-quality and signal-to-noise ratio; see Methods section 'Observations'. These cubes were processed through the OSIRIS pipeline 14 . We also removed the stellar continua to isolate emission features associated with interstellar gas (Methods section 'Continuum subtraction'). The reduced data-cubes were analysed with a 3D visualization tool, OsrsVol 15 , that simultaneously displays all dimensions of the data-cube. This helps disentangle the many features of this crowded region, which are often superimposed in the spatial dimension but are separable in the wavelength dimension (Fig. 1).Analysing the data with OsrsVol as well as conventional 2D and 1D tools, we identify four new compact objects in Brackett-γ line emission (Brγ; 2.1661 µm rest wavelength) that consistently appear in the data across the observed timeline. In addition to Brγ, all four objects show two [Fe III] emission lines (at 2.1457 µm and 2.2184 µm; ref. 16 ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.