Pulsar Wind Nebula (PWN) DA 495 (G65.7+1.2) was detected in TeV gamma-rays by the High Altitude Water Cherenkov Observatory (HAWC) in 2017 (2HWC J1953+294). Follow-up observations by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) confirmed the association between 2HWC J1953+294 and DA 495 and found the TeV emission to be spatially coincident with the radio emission first reported in 1968. The detection of TeV gamma-rays from DA 495, along with past X-ray detection up to 10 keV, prompted high energy X-ray observations as part of the NuSTAR Galactic Legacy Survey. We present the results of these NuSTAR observations, combined with archival Chandra and XMM-Newton observations, and confirm the previous X-ray photon index of Γ 2−20 keV = 2.0 ± 0.1. We find no spectral cutoff up to 20 keV. With the spectral information for DA 495 extended to TeV gamma-rays, we were able to perform analytical modeling to test leptonic and hadronic emission scenarios. The leptonic models can explain the broadband emission, but also imply a diffuse X-ray nebula of similar extent to the radio and TeV nebulae, which cannot be confirmed by our observations. The hadronic models can simultaneously explain the spectrum and the spatial extent in all wavelengths; however, we need a very high magnetic field strength pervading the radio and TeV nebulae and a surprisingly high particle kinetic energy. These requirements deepen the mystery of the physical nature of DA 495. Future observations in radio to infrared bands and spatially resolved γ-rays can further constrain the physical conditions and radiation mechanisms in DA 495.
We report NuSTAR and Chandra observations of two X-ray transients, SWIFT J174540.7−290015 (T15) and SWIFT J174540.2−290037 (T37), which were discovered by the Neil Gehrels Swift Observatory in 2016 within r ∼ 1 pc of Sgr A*. NuSTAR detected bright X-ray outbursts from T15 and T37, likely in the soft and hard states, with 3-79 keV luminosities of 8 × 10 36 and 3 × 10 37 erg s −1 , respectively. No X-ray outbursts have previously been detected from the two transients and our Chandra ACIS analysis puts an upper limit of L X < ∼ 2 × 10 31 erg s −1 on their quiescent 2-8 keV luminosities. No pulsations, significant QPOs, or type I X-ray bursts were detected in the NuSTAR data. While T15 exhibited no significant red noise, the T37 power density spectra are well characterized by three Lorentzian components. The declining variability of T37 above ν ∼ 10 Hz is typical of black hole (BH) transients in the hard state. NuSTAR spectra of both transients exhibit a thermal disk blackbody, X-ray reflection with broadened Fe atomic features, and a continuum component well described by Comptonization models. Their X-ray reflection spectra are most consistent with high BH spin (a * > ∼ 0.9) and large disk density (n e ∼ 10 21 cm −3 ). Based on the best-fit ionization parameters and disk densities, we found that X-ray reflection occurred near the inner disk radius, which was derived from the relativistic broadening and thermal disk component. These X-ray characteristics suggest the outbursting BH-LMXB scenario for both transients and yield the first BH spin measurements from X-ray transients in the central 100 parsec region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.