The most profound technologies are those that disappear... They weave themselves into the fabric of everyday life until they are indistinguishable from it" wrote computer scientist and visionary Mark Weiser nearly 25 years ago in his essay "The Computer for the 21st Century." It turns out he was right: in the age of "Industry 4.0", digital technologies are the core driver for the manufacturing transformation. In fact, the introduction of such technologies allows companies to find solutions capable to turn increasing complexity into opportunities for ensuring sustainable competitiveness and profitable growth. Nonetheless, the effective implementation in manufacturing still depends on the state of practice: it may slow down, or even worst, may prevent from implementation. Indeed, we assume that a minimum level of capabilities is required before implementing the digital technologies in a company. Based on this concern, our research question is "are manufacturing companies ready to go digital?". This paper wants to illustrate a "tool" to answer this question by building a maturity assessment method to measure the digital readiness of manufacturing firms. Based on the inspiring principles of the CMMI (Capability Maturity Model Integration) framework, we propose a model to set the ground for the investigation of company digital maturity. Different dimensions are used to assess 5 areas in which manufacturing key processes can be grouped: 1) design and engineering, 2) production management, 3) quality management, 4) maintenance management and 5) logistics management. Thus, the maturity model provides a normative description of practices in each area and dimension, building a ranked order of practices (i.e. from low to high maturity). A scoring method for maturity assessment is subsequently defined, in order to identify the criticalities in implementing the digital transformation and to subsequently drive the improvement of the whole system. The method should be useful both to manufacturing companies and researchers interested in understanding the digital readiness level in the state of practice.
Within the era of Industry 4.0, digital technologies are seen as the main drivers for manufacturing industry transformation. In fact, many sustain that manufacturing companies will be able to obtain many benefits and opportunities from the digital transformation. If on one hand manufacturing companies have to be able to "ride" this wave of transformation in order to remain competitive, on the other hand, before investing in digital technologies, they have to understand what their current situation is and what their needs are with respect to both digital technologies and organizational processes in different functions. Indeed, the success of the transformation process mainly depends on the company ability to be ready to apply the technological change that some of these digital technologies envision. From these considerations, after having figured out their current readiness level for starting the digital transformation fostered by the Industry 4.0, it is possible to state that the next step manufacturing companies have to undertake is to define their transformation roadmap. With the aim to guide them towards this transformation process, a maturity model, called DREAMY (Digital REadiness Assessment MaturitY model) and based on the inspiring principles of the CMMI (Capability Maturity Model Integration) framework, has been developed and utilized. The objectives of this model are twofold. Firstly, it allows the assessment of the current digital readiness of manufacturing companies and the identification of their strengths and weaknesses with respect to implemented technologies and organizational processes. Secondly, it enables the identification of a set of opportunities offered to companies by the digital transformation, considering their strengths and aiming to overcome their weaknesses. Through the application of this methodology into case studies, it has been possible to reach two main results. On one hand, the analyzed manufacturing companies have been aware of their digital readiness level, of their strengths and weaknesses and of the main opportunities they can exploit from the digitalization process starting from their current situation. On the other hand, empirical evidences were gathered on the current level of manufacturing companies' digital readiness and on the possible common traits among the identified opportunities.
One of the most exciting new capabilities in Smart Manufacturing (SM) and Cyber-Physical Production Systems (CPPS) is the provisioning of manufacturing services as unbundled "apps or services", which could be significantly more flexible and less expensive to use than the current generation of monolithic manufacturing applications. However, bundling and integrating heterogeneous services in the form of such apps or composite services is not a trivial job. There is a need for service vendors, cloud vendors, manufacturers, and other stakeholders to work collaboratively to simplify the effort to "mix-and-match" and compose the apps or services. In this regard, a workshop was organized by the National Institute of Standards and Technology (NIST) and the Open Applications Group Inc. (OAGi), with the purpose to identifythrough parallel sessionstechnology and standard needs for improving interoperability and composability between services. The workshop was organized into five working session. This paper documents evidences gathered during the "Smart Manufacturing Systems Characterization" (SMSC) session, which aims at establishing a roadmap for a unified framework for assessing a manufacturer's capability, maturity and readiness level to implement Smart Manufacturing. To that end, the technology maturity, information connectivity maturity, process maturity, organizational maturity, and personnel capability and maturity, have been identified as critical aspects for Smart Manufacturing adoptions. The workshop session culminated at providing a coherent model and method for assisting manufacturing companies in their journey to smart manufacturing realizations. This paper shows three different maturity models and tools that, thanks to their complementarity, enable one to reflect on the different perspectives required by SMSC. These models and tools are usable together for assessing a manufacturing company's ability to initiate the digital transformation of its processes towards Smart Manufacturing. Therefore, based on their comparison, the ultimate purpose of the research is to come up with a set of coherent guidelines for assessing a manufacturing system and its management practices for identifying improvement opportunities and for recommending SM technologies and standards for adoption by manufacturers.
Several manufacturing companies are coping with the need to change their business model, being compelled to provide smart, connected and servitized solutions to their customers to survive in the market. A strategic trigger and catalyst of such a transition is represented by digital technologies. Embedded on physical products, digital technologies enable knowledge-based services capable not only of monitoring but also of controlling and optimize, sometimes even at an autonomous level, the system provided to the customer. However, several hurdles (categorized in technical/technological, organizational, human resources-related, and customer-related) can be met along the digital servitization path. It is still not clear what should be implemented in a company internally realizing the need of implementing the digital servitization transition. This paper has the aim of conducting a strategic analysis to understand how to initiate to the digital servitization phenomenon a company producing machineries for the decoration of plastic objects and containers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.