In fission yeast, meiotic prophase nuclei develop structures known as linear elements (LinEs), instead of a canonical synaptonemal complex. LinEs contain Rec10 protein. While Rec10 is essential for meiotic recombination, the precise role of LinEs in this process is unknown. Using in situ immunostaining, we show that Rec7 (which is required for meiosis-specific DNA double-strand break (DSB) formation) aggregates in foci on LinEs. The strand exchange protein Rad51, which is known to mark the sites of DSBs, also localizes to LinEs, although to a lesser degree. The number of Rec7 foci corresponds well with the average number of genetic recombination events per meiosis suggesting that Rec7 marks the sites of recombination. Rec7 and Rad51 foci do not co-localize, presumably because they act sequentially on recombination sites. The localization of Rec7 is dependent on Rec10 but independent of the DSB-inducing protein Rec12/Spo11. Neither Rec7 nor Rad51 localization depends on the LinE-associated proteins Hop1 and Mek1, but the formation of Rad51 foci depends on Rec10, Rec7, and, as expected, Rec12/Spo11. We propose that LinEs form around designated recombination sites before the induction of DSBs and that most, if not all, meiotic recombination initiates within the setting provided by LinEs.
In the fission yeast, Schizosaccharomyces pombe, homologous chromosomes efficiently pair and recombine during meiotic prophase without forming a canonical synaptonemal complex (SC). Instead, it features simpler filamentous structures, the so-called linear elements (LinEs), which bear some resemblance to the axial/lateral element subunits of the SC. LinEs are required for wild-type recombination frequency. Here, we recognized Mug20, the product of a meiotically upregulated gene, as a LinE-associated protein. GFP-tagged Mug20 and anti-Mug20 antibody co-localized completely with Rec10, one of the major constituents of LinEs. In the absence of Mug20, LinEs failed to elongate beyond their initial state of nuclear dots. Foci of recombination protein Rad51 and genetic recombination were reduced. Since meiotic DNA double-strand breaks (DSBs), which initiate recombination, are induced at sites of preformed LinEs, we suggest that reduced recombination is a consequence of incomplete LinE extension. Therefore, we propose that Mug20 is required to extend LinEs from their sites of origin and thereby to increase DSB proficient regions on chromosomes.
In the fission yeast, Schizosaccharomyces pombe, synaptonemal complexes (SCs) are not formed during meiotic prophase. However, structures resembling the axial elements of SCs, the so-called linear elements (LinEs) appear. By in situ immunostaining, we found Pmt3 (S. pombe's SUMO protein) transiently along LinEs, suggesting that SUMOylation of some component(s) of LinEs occurs during meiosis. Mutation of the SUMO ligase Pli1 caused aberrant LinE formation and reduced genetic recombination indicating a role for SUMOylation of LinEs for the regulation of meiotic recombination. Western blot analysis of TAP-tagged Rec10 demonstrated that there is a Pli1-dependent posttranslational modification of this protein, which is a major LinE component and a distant homolog of the SC protein Red1. Mass spectrometry (MS) analysis revealed that Rec10 is both phosphorylated and ubiquitylated, but no evidence for SUMOylation of Rec10 was found. These findings indicate that the regulation of LinE and Rec10 function is modulated by Pli1-dependent SUMOylation of LinE protein(s) which directly or indirectly regulates Rec10 modification. On the side, MS analysis confirmed the interaction of Rec10 with the known LinE components Rec25, Rec27, and Hop1 and identified the meiotically upregulated protein Mug20 as a novel putative LinE-associated protein.
Most organisms form protein-rich, linear, ladder-like structures associated with chromosomes during early meiosis, the synaptonemal complex. In Schizosaccharomyces pombe, linear elements (LinEs) are thread-like, proteinacious chromosome-associated structures that form during early meiosis. LinEs are related to axial elements, the synaptonemal complex precursors of other organisms. Previous studies have led to the suggestion that axial structures are essential to mediate meiotic recombination. Rec10 protein is a major component of S. pombe LinEs and is required for their development. In this report we study recombination in a number of rec10 mutants, one of which (rec10-155) does not form LinEs, but is predicted to encode a truncated Rec10 protein. This mutant has levels of crossing over and gene conversion substantially higher than a rec10 null mutant (rec10-175) and forms cytologically detectable Rad51 foci indicative of meiotic recombination intermediates. These data demonstrate that while Rec10 is required for meiotic recombination, substantial meiotic recombination can occur in rec10 mutants that do not form LinEs, indicating that LinEs per se are not essential for all meiotic recombination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.