Asthma is a chronic disease of childhood, but for unknown reasons, disease activity sometimes subsides as children mature. In this study, we present clinical and animal model evidence suggesting that the age dependency of childhood asthma stems from an evolving host response to respiratory viral infection. Using clinical data, we show that societal suppression of respiratory virus transmission during coronavirus disease 2019 lockdown disrupted the traditional age gradient in pediatric asthma exacerbations, connecting the phenomenon of asthma remission to virus exposure. In mice, we show that asthmatic lung pathology triggered by Sendai virus (SeV) or influenza A virus is highly age-sensitive: robust in juvenile mice (4–6 wk old) but attenuated in mature mice (>3 mo old). Interestingly, allergen induction of the same asthmatic traits was less dependent on chronological age than viruses. Age-specific responses to SeV included a juvenile bias toward type 2 airway inflammation that emerged early in infection, whereas mature mice exhibited a more restricted bronchiolar distribution of infection that produced a distinct type 2 low inflammatory cytokine profile. In the basal state, aging produced changes to lung leukocyte burden, including the number and transcriptional landscape of alveolar macrophages (AMs). Importantly, depleting AMs in mature mice restored post-SeV pathology to juvenile levels. Thus, aging influences chronic outcomes of respiratory viral infection through regulation of the AM compartment and type 2 inflammatory responses to viruses. Our data provide insight into how asthma remission might develop in children.
Asthma is a common chronic disease of childhood, but for unknown reasons disease activity sometimes subsides as children mature. To understand why, we exposed mice across a range of ages to viral and allergic triggers of asthma exacerbations and airway pathology. We found that pathology induced by Sendai virus (SeV) or influenza A virus (IAV) occurred selectively in juvenile mice in a microbiome-independent manner, while the same phenotypes induced by allergens were insensitive to age. Age-specific responses to SeV included a juvenile bias towards type-2 airway inflammation that emerged early in infection and was lost with maturation. With aging, we observed progressive transcriptional changes to alveolar macrophages (AMs) including the acquisition of high-level MHC-II expression. Importantly, depleting AMs canceled the protective effects of maturity on post-viral airway pathology. Thus, aging of the lung-immune microenvironment influences chronic outcomes of respiratory viral infection and may help to explain childhood asthma remission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.