Graphitic carbon nitride, g-C 3 N 4 , can be made by polymerization of cyanamide, dicyandiamide or melamine. Depending on reaction conditions, different materials with different degrees of condensation, properties and reactivities are obtained. The firstly formed polymeric C 3 N 4 structure, melon, with pendant amino groups, is a highly ordered polymer. Further reaction leads to more condensed and less defective C 3 N 4 species, based on tri-s-triazine (C 6 N 7 ) units as elementary building blocks. High resolution transmission electron microscopy proves the extended two-dimensional character of the condensation motif. Due to the polymerization-type synthesis from a liquid precursor, a variety of material nanostructures such as nanoparticles or mesoporous powders can be accessed. Those nanostructures also allow fine tuning of properties, the ability for intercalation, as well as the possibility to give surface-rich materials for heterogeneous reactions. Due to the special semiconductor properties of carbon nitrides, they show unexpected catalytic activity for a variety of reactions, such as for the activation of benzene, trimerization reactions, and also the activation of carbon dioxide. Model calculations are presented to explain this unusual case of heterogeneous, metal-free catalysis. Carbon nitride can also act as a heterogeneous reactant, and a new family of metal nitride nanostructures can be accessed from the corresponding oxides.
In the sustainable production of non-fossil fuels, water oxidation is pivotal. Development of efficient catalysts based on manganese is desirable because this element is earth-abundant, inexpensive, and largely non-toxic. We report an electrodeposited Mn oxide (MnCat) that catalyzes electrochemical water oxidation at neutral pH at rates that approach the level needed for direct coupling to photoactive materials. By choice of the voltage protocol we could switch between electrodeposition of inactive Mn oxides (deposition at constant anodic potentials) and synthesis of the active MnCat (deposition by voltage-cycling protocols). Electron microscopy reveals that the MnCat consists of nanoparticles (100 nm) with complex fine-structure. X-ray spectroscopy reveals that the amorphous MnCat resembles the biological paragon, the water-splitting Mn 4 Ca complex of photosynthesis, with respect to mean Mn oxidation state (ca. +3.8 in the MnCat) and central structural motifs. Yet the MnCat functions without calcium or other bivalent ions. Comparing the MnCat with electrodeposited Mn oxides inactive in water oxidation, we identify characteristics that likely are crucial for catalytic activity. In both inactive Mn oxides and active ones (MnCat), extensive di-m-oxo bridging between Mn ions is observed. However in the MnCat, the voltage-cycling protocol resulted in formation of Mn III sites and prevented formation of well-ordered and unreactive Mn IV O 2 . Structure-function relations in Mn-based wateroxidation catalysts and strategies to design catalytically active Mn-based materials are discussed. Knowledge-guided performance optimization of the MnCat could pave the road for its technological use. Broader contextThreatening global climate changes and unsecured supply of fossil fuels call for a global transition toward sustainable energyconversion systems. The storage of wind or solar energy by formation of energy-rich fuel molecules could play a central role in both transient storage of the intermittently provided energy and replacement of fossil fuels in the transportation sector. Whether hydrogen or a carbon-based fuel is the target, in any event the extraction of reducing equivalents and protons from water (that is, water oxidation) is pivotal. In search of water-oxidation catalysts that ultimately could play a role at a global scale, we and others are aiming at development of simple routes towards formation of Mn-based catalysts. Manganese excels by high availability and low toxicity; and in oxygenic photosynthesis, nature has demonstrated that a Mn-based catalyst can oxidize water efficiently. When aiming at an 'artificial leaf' with a Mn-based catalyst directly coupled to a solar-energy-converting material, the activity of the catalyst (per area) needs to cope with the incoming photon flux. Moreover the device design typically requires the use of benign synthesis and operation conditions, that is, temperatures close to room temperature and pH close to neutral. As an important first step, we report a simple protocol for e...
In the footsteps of Liebig and Berzelius: A material first synthesized in 1834, carbon nitride (C3N4), was synthesized in a graphitic mesoporous form by using silica nanoparticles as templates. The resulting electron‐rich solid is an active catalyst for the Friedel–Crafts acylation of benzene with hexanoyl chloride. Presumably the catalysis arises from a shift of electron density from the MOs of the catalyst to the unoccupied orbitals of benzene (see picture).
Water oxidation in the neutral pH regime catalyzed by amorphous transition-metal oxides is of high interest in energy science. Crucial determinants of electrocatalytic activity were investigated for a cobalt-based oxide film electrodeposited at various thicknesses on inert electrodes. For water oxidation at low current densities, the turnover frequency (TOF) per cobalt ion of the bulk material stayed fully constant for variation of the thickness of the oxide film by a factor of 100 (from about 15 nm to 1.5 μm). Thickness variation changed neither the nanostructure of the outer film surface nor the atomic structure of the oxide catalyst significantly. These findings imply catalytic activity of the bulk hydrated oxide material. Nonclassical dependence on pH was observed. For buffered electrolytes with pKa values of the buffer base ranging from 4.7 (acetate) to 10.3 (hydrogen carbonate), the catalytic activity reflected the protonation state of the buffer base in the electrolyte solution directly and not the intrinsic catalytic properties of the oxide itself. It is proposed that catalysis of water oxidation occurs within the bulk hydrated oxide film at the margins of cobalt oxide fragments of molecular dimensions. At high current densities, the availability of a proton-accepting base at the catalyst-electrolyte interface controls the rate of water oxidation. The reported findings may be of general relevance for water oxidation catalyzed at moderate pH by amorphous transition-metal oxides.
The formation mechanisms of silver nanoparticles using aqueous silver perchlorate solutions as precursors and sodium borohydride as reducing agent were investigated based on time-resolved in situ experiments. This contribution addresses two important issues in colloidal science: (i) differences and analogies between growth processes of different metals such as gold and silver and (ii) the influence of a steric stabilizing agent on the growth process. The results reveal that a growth due to coalescence is a fundamental growth principle if the monomer-supplying chemical reaction is faster than the actual particle formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.