The aim of the study was to examine and compare oxidative stability of refined (peanut, corn, rice bran, grapeseed, and rapeseed) oils. The oils were subject a Schaal Oven Test (temperature 63 ± 1 °C) and a Rancimat test (temperature 120 °C) and their stability was compared at the 1st and 12th month of storage. Changes in the peroxide (PV) and anisidine (AnV) values in the thermostat test were the fastest in rapeseed oil and grapeseed oil. The best quality was preserved by peanut and corn oils both in the first and the twelfth month of storage. The induction times for the rice bran, corn, peanut, and rapeseed oils were similar from 4.77 h to 5.02 h in the first month and from 3.22 h to 3.77 h in the twelfth month. The shortest induction times were determined for grapeseed oil: 2.4 h and 1.6 h, respectively. A decrease of oxidative stability of about 30% was found in all the oils after 12 months of storage. The PV of 10, determined in the thermostat and Rancimat tests, were achieved at the latest in corn oil and the fastest in rice bran oil.
This paper reviews the potential of prebiotic-containing foods in the prevention or postponement of certain diet-related diseases, such as cardiovascular diseases with hypercholesterolemia, osteoporosis, diabetes, gastrointestinal infections and gut inflammation. Also the data on prebiotics as food ingredients and their impact on food product quality are presented. Prebiotics are short chain carbohydrates that are resistant to the digestion process in the upper part of the digestive system, are not absorbed in any segment of the gastrointestinal system, and finally are selectively fermented by specific genera of colonic bacteria. The mechanisms of the beneficial impacts of prebiotics on human health are very difficult to specify directly, because their health-promoting functions are related to fermentation by intestinal microflora. The impact of prebiotics on diet-related diseases in many ways also depends on the products of their fermentation. Prebiotics as functional food ingredients also have an impact on the quality of food products, due to their textural and gelling properties. Prebiotics as food additives can be very valuable in the creation of functional food aimed at preventing or postponing many diet-related diseases. They additionally have beneficial technological properties which improve the quality of food products.
In the present study, the potential to design natural tea-infused set yoghurt was investigated. Three types of tea (Camellia sinensis): black, green and oolong tea as well as lemon balm (Melissa officinalis L.) were used to produce set yoghurt. The sensory quality (using Quantitative Descriptive Profile analysis and consumer hedonic test) and texture analysis, yield stress, physical stability and colour analysis were assessed to describe the profile of the yoghurt and influence of quality attributes of the product on the consumer acceptability of infused yoghurts in comparison with plain yoghurt. Among the analyzed plant additives for yoghurt, addition of 2% oolong tea to the yoghurt allows a functional food to be obtained with satisfactory texture and sensory properties, accepted by consumers at the same level as for control yoghurt. Both types of yoghurt were also characterised by high consumer willingness to buy, which confirms the legitimacy of using oolong tea as a natural, functional yoghurt additive that improves the sensory quality of the product. The high overall quality of yoghurt with oolong tea in comparison to other plant extracts was associated with the intensive peach flavour and odour, nectar and sweet odour and flavour, and the highest creaminess and thickness. That was confirmed by principal component analysis (PCA) where the overall sensory quality of yoghurts was mainly positively correlated with peach flavour and odour, sweet odour and yoghurt odour, while it was negatively correlated with herbs flavor and odour, and green tea flavour and odour. The sensory profile confirmed no differences in textural profile between plain yoghurt and the tea-infused one measured in the mouth, which corresponds to the result of textural properties such as firmness and adhesiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.