A single bout of foam rolling (FR) can acutely increase joint range of motion (ROM) without detrimental effects on subsequent muscle performance. Similarly, long-term FR training can increase ROM, while muscle performance seems to be unaffected. Although the acute and long-term effects of FR on the treated muscle are understood, the impact of FR on the contralateral side is not well known. Therefore, this scoping review aims to summarize the current evidence on the acute and long-term effect of FR on the ipsilateral limb on ROM and muscle performance (i.e., maximum force, rate of force development, jump height) for the contralateral (non-treated) limb. Potential explanatory mechanisms are also discussed. There is evidence that a single bout of FR on the ipsilateral limb increases ROM of the contralateral limb; however, evidence is limited for long-term effects. The most likely mechanism for contralateral ROM increases is a reduced perception of pain. With regard to isolated muscle contractions, no changes in muscle performance (i.e., maximum voluntary isometric contraction, maximum voluntary dynamic contraction) were found in the contralateral limb after a single bout of FR on the ipsilateral limb. Notably, only one study reported large impairments in rate of force development of the contralateral limb following FR on the ipsilateral leg, possibly due to decreased motor unit recruitment. Furthermore, to date there are only two studies examining the long-term FR training of the ipsilateral limb on performance (i.e., maximal strength and jump performance) which reported moderate improvements. Although, trivial to very large changes on a variety of parameters were found in this study, the functional and practical relevance of our findings should be interpreted with caution.
It is known that a single bout of foam rolling (FR) or stretching can induce changes in range of motion (ROM) and performance in non-directly adjoining areas of the dorsal chain (i.e., remote effects). However, to date, it is not known if such effects exist following long-term interventions. Thus, the purpose of this study was to investigate the remote effects of a 7-week combined stretching and FR training intervention of the plantar foot sole. Thirty-eight recreational athletes were randomly assigned to either an intervention (n = 20) or control (n = 18) group. The intervention group performed stretching and FR exercises of the plantar foot sole for 7 weeks. Before and after the intervention, the dorsiflexion ankle ROM, passive resistive torque at maximum angle (PRTmax) and at a fixed angle, as well as maximum voluntary isometric contraction (MVIC) torque, were measured with a dynamometer. Gastrocnemius medialis and lateralis stiffness was assessed with shear wave elastography. The results showed no interaction effect for any of the parameters. There was a time effect indicating an increase in MVIC and PRTmax, which was more pronounced in the intervention group (+ 7.4 (95% CI 2.5–12.4), + 4.5 (95% CI − 0.2–9.2)) than the control group (+ 3.6 (95% CI − 1.4–8.6), + 4.0 (95% CI − 2.2 to 10.2)). The results indicate no or minor remote effects of combined stretching and FR of the foot sole in the ankle joint. Potential non-significant changes in ROM were accompanied with an increase in stretch tolerance, but not with changes in muscle structure.
Background There is evidence that high-volume static stretching training of the lower limbs can increase the range of motion (ROM) while decreasing muscles stiffness. However, to date, there is no evidence on the effects of upper limb stretching training or its effect mechanism. Therefore, this study aimed to investigate the effects of a comprehensive 7-week static stretching training program of the pectoralis major muscle (PMa) on glenohumeral joint ROM, muscle force, and muscle stiffness. Methods Thirty-eight healthy, physically active participants (23 male, 15 female) were randomly assigned to either the PMa-static stretching intervention (PMa-SS) group or the control group. The PMa-SS group performed a 7-week intervention comprising three sessions a week for 15 min per session, including three static stretching exercises of the PMa for 5 min each. Before and after the intervention period, shoulder extension ROM, muscle stiffness of the PMa (pars clavicularis), and maximal voluntary isometric contraction (MVIC) peak torque (evaluated at both long (MVIClong) and short (MVICshort) muscle lengths) were investigated on a custom-made testing device at 45° shoulder abduction. Results In the PMa-SS group, the shoulder extension ROM (+ 6%; p < 0.01; d = 0.92) and the MVIClong (+ 11%; p = 0.01; d = 0.76) increased. However, there were no significant changes in MVICshort or in PMa muscle stiffness in the PMa-SS group. In the control group, no changes occurred in any parameter. Conclusion In addition to the increase in ROM, we also observed an improved MVIC at longer but not shorter muscle lengths. This potentially indicates an increase in fascicle length, and hence a likely increase in sarcomeres in series.
Background Community-dwelling older people are frequently affected by vertigo, dizziness and balance disorders (VDB). We previously developed a care pathway (CPW) to improve their mobility and participation by offering standardized approaches for general practitioners (GPs) and physical therapists (PTs). We aimed to assess the feasibility of the intervention, its implementation strategy and the study procedures in preparation for the subsequent main trial. Methods This 12-week prospective cohort feasibility study was accompanied by a process evaluation designed according to the UK Medical Research Council’s Guidance for developing and evaluating complex interventions. Patients with VDB (≥65 years), GPs and PTs in primary care were included. The intervention consisted of a diagnostic screening checklist for GPs and a guide for PTs. The implementation strategy included specific educational trainings and a telephone helpline. Data for mixed-method process evaluation were collected via standardized questionnaires, field notes and qualitative interviews. Quantitative data were analysed using descriptive statistics, qualitative data using content analysis. Results A total of five GP practices (seven single GPs), 10 PT practices and 22 patients were included in the study. The recruitment of GPs and patients was challenging (response rates: GP practices: 28%, PT practices: 39%). Ninety-one percent of the patients and all health professionals completed the study. The health professionals responded well to the educational trainings; the utilization of the telephone helpline was low (one call each from GPs and PTs). Familiarisation with the routine of application of the intervention and positive attitudes were emphasized as facilitators of the implementation of the intervention, whereas a lack of time was mentioned as a barrier. Despite difficulties in the GPs’ adherence to the intervention protocol, the GPs, PTs and patients saw benefit in the intervention. The patients’ treatment adherence to physical therapy was good. There were minor issues in data collection, but no unintended consequences. Conclusion Although the process evaluation provided good support for the feasibility of study procedures, the intervention and its implementation strategy, we identified a need for improvement in recruitment of participants, the GP intervention part and the data collection procedures. The findings will inform the main trial to test the interventions effectiveness in a cluster RCT. Trial registration Projektdatenbank Versorgungsforschung Deutschland (German registry Health Services Research) VfD_MobilE-PHY_17_003910, date of registration: 30.11.2017; Deutsches Register Klinischer Studien (German Clinical Trials Register) DRKS00022918, date of registration: 03.09.2020 (retrospectively registered).
Although it is well known that foam rolling (FR) of the lower extremities can increase the range of motion (ROM) of a joint while likely having no detrimental effect on muscle performance, to date, this is not clear if this is the case for the upper body. Therefore, the purpose of this study was to analyze the effects of a 2-min FR intervention of the pectoralis major (PMa) muscle on muscle stiffness of the PMa, shoulder extension ROM, and maximal voluntary isometric contraction (MVIC) peak torque. Thirty-eight (n = 15 females) healthy, physically active participants were randomly assigned to either an intervention (n = 18) or a control group (n = 20). The intervention group performed a 2-min foam ball rolling (FBR) intervention of the PMa muscle (FB-PMa-rolling), while the control group rested for 2 min. Before and after the intervention, muscle stiffness of the PMa was measured with shear wave elastography, while shoulder extension ROM was recorded with a 3D-motion capture system, and shoulder flexion MVIC peak torque was measured with a force sensor. MVIC peak torque decreased in both groups (time effect: p = 0.01; η2 = 0.16), without any difference between groups (interaction effect: p = 0.49, η2 = 0.013). ROM (p = 0.24; η2 = 0.04) and muscle stiffness (FB-PMa-rolling p = 0.86; Z = -0.38; control group p = 0.7, Z = -0.17) did not change due to the intervention. The lack of changes in ROM and muscle stiffness following the FBR intervention might be explained by the small area of applied pressure with the FBR on the PMa muscle. Moreover, the decrease in MVIC peak torque is likely more related to the uncommon test situation of the upper limbs, rather than the FBR intervention itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.